磁场作用下粘性流动激波相似度分析的李群

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Arvind Patel, Yogeeta Garg
{"title":"磁场作用下粘性流动激波相似度分析的李群","authors":"Arvind Patel,&nbsp;Yogeeta Garg","doi":"10.1016/j.cjph.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the propagation of planar shock waves in an ideal gas under the viscous stress and magnetic field using the Lie group of similarity analysis. The ambient density and magnetic field both vary with shock radius as power and exponential law. Newton’s law of viscosity has been used and shock jump conditions have been derived for viscous flow by introducing shock Reynolds number <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. The system of governing partial differential equations is reduced into a system of ordinary differential equations using the Lie group of invariance method and numerical solutions have been obtained for power and exponential law both. The effects of shock Reynolds number <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>10</mn></mrow></math></span> (highly viscous flow), 50, 200, 1000 (slightly viscous flow), and <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span> (non-viscous flow), Alfven-Mach number, and ratio of specific heats have been discussed on the shock strength, piston position and flow variables behind the shock front. The magnetic field enhances the effect of viscous stress in exponential law but reduces in power law. All flow variables except viscous stress increase for power law and decrease for exponential law in viscous flow in comparison to non-viscous flow. Comparison of results of highly non-viscous flow with the corresponding results of inviscid flow establishes the validity of the model presented in this work. The results of this paper show the significant effect of viscosity on shock propagation contrary to the negligible effect in earlier studies.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 1531-1547"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie group of similarity analysis of shock waves in viscous flow under magnetic field\",\"authors\":\"Arvind Patel,&nbsp;Yogeeta Garg\",\"doi\":\"10.1016/j.cjph.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the propagation of planar shock waves in an ideal gas under the viscous stress and magnetic field using the Lie group of similarity analysis. The ambient density and magnetic field both vary with shock radius as power and exponential law. Newton’s law of viscosity has been used and shock jump conditions have been derived for viscous flow by introducing shock Reynolds number <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>. The system of governing partial differential equations is reduced into a system of ordinary differential equations using the Lie group of invariance method and numerical solutions have been obtained for power and exponential law both. The effects of shock Reynolds number <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>10</mn></mrow></math></span> (highly viscous flow), 50, 200, 1000 (slightly viscous flow), and <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>→</mo><mi>∞</mi></mrow></math></span> (non-viscous flow), Alfven-Mach number, and ratio of specific heats have been discussed on the shock strength, piston position and flow variables behind the shock front. The magnetic field enhances the effect of viscous stress in exponential law but reduces in power law. All flow variables except viscous stress increase for power law and decrease for exponential law in viscous flow in comparison to non-viscous flow. Comparison of results of highly non-viscous flow with the corresponding results of inviscid flow establishes the validity of the model presented in this work. The results of this paper show the significant effect of viscosity on shock propagation contrary to the negligible effect in earlier studies.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"92 \",\"pages\":\"Pages 1531-1547\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S057790732400443X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057790732400443X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用李群相似分析法研究了理想气体中平面激波在粘性应力和磁场作用下的传播。环境密度和磁场随冲击半径呈幂和指数规律变化。利用牛顿黏性定律,引入激波雷诺数res,推导了粘性流动的激波跳跃条件。利用不变李群法,将控制偏微分方程组简化为常微分方程组,得到了幂律和指数律的数值解。讨论激波雷诺数Res=10(高粘性流动)、50、200、1000(微粘性流动)和Res→∞(非粘性流动)、阿尔芬-马赫数和比热比对激波强度、活塞位置和激波后流动变量的影响。磁场对粘性应力的影响在指数律上增强,在幂律上减弱。与非粘滞流动相比,粘滞流动中除粘滞应力外,其他流动变量均呈幂律增大,指数律减小。将高无粘性流动的结果与相应的无粘性流动的结果进行比较,证实了本文模型的有效性。本文的研究结果表明,粘度对激波传播的影响是显著的,而不是以往研究中可以忽略不计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lie group of similarity analysis of shock waves in viscous flow under magnetic field

Lie group of similarity analysis of shock waves in viscous flow under magnetic field
This paper investigates the propagation of planar shock waves in an ideal gas under the viscous stress and magnetic field using the Lie group of similarity analysis. The ambient density and magnetic field both vary with shock radius as power and exponential law. Newton’s law of viscosity has been used and shock jump conditions have been derived for viscous flow by introducing shock Reynolds number Res. The system of governing partial differential equations is reduced into a system of ordinary differential equations using the Lie group of invariance method and numerical solutions have been obtained for power and exponential law both. The effects of shock Reynolds number Res=10 (highly viscous flow), 50, 200, 1000 (slightly viscous flow), and Res (non-viscous flow), Alfven-Mach number, and ratio of specific heats have been discussed on the shock strength, piston position and flow variables behind the shock front. The magnetic field enhances the effect of viscous stress in exponential law but reduces in power law. All flow variables except viscous stress increase for power law and decrease for exponential law in viscous flow in comparison to non-viscous flow. Comparison of results of highly non-viscous flow with the corresponding results of inviscid flow establishes the validity of the model presented in this work. The results of this paper show the significant effect of viscosity on shock propagation contrary to the negligible effect in earlier studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信