二维无压欧拉系统可容许弱解的非唯一性

IF 2.3 2区 数学 Q1 MATHEMATICS
Feimin Huang , Jiajin Shi , Yi Wang
{"title":"二维无压欧拉系统可容许弱解的非唯一性","authors":"Feimin Huang ,&nbsp;Jiajin Shi ,&nbsp;Yi Wang","doi":"10.1016/j.jde.2024.11.032","DOIUrl":null,"url":null,"abstract":"<div><div>We study Riemann problem for the two-dimensional (2D) pressureless Euler system with planar Riemann initial data. It is proved that there exist infinitely many bounded admissible weak solutions to the 2D Riemann problem by the method of convex integration. Meanwhile, the corresponding one-dimensional (1D) Riemann problem admits a unique measure-valued solution (so-called <em>δ</em>-shock) under the Oleĭnik's entropy condition and an additional energy condition, which implies the non-existence of 1D bounded admissible weak solutions with energy condition (cf. <span><span>[19]</span></span>).</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"418 ","pages":"Pages 238-257"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniqueness of admissible weak solutions to the two-dimensional pressureless Euler system\",\"authors\":\"Feimin Huang ,&nbsp;Jiajin Shi ,&nbsp;Yi Wang\",\"doi\":\"10.1016/j.jde.2024.11.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study Riemann problem for the two-dimensional (2D) pressureless Euler system with planar Riemann initial data. It is proved that there exist infinitely many bounded admissible weak solutions to the 2D Riemann problem by the method of convex integration. Meanwhile, the corresponding one-dimensional (1D) Riemann problem admits a unique measure-valued solution (so-called <em>δ</em>-shock) under the Oleĭnik's entropy condition and an additional energy condition, which implies the non-existence of 1D bounded admissible weak solutions with energy condition (cf. <span><span>[19]</span></span>).</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"418 \",\"pages\":\"Pages 238-257\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400754X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400754X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究具有平面黎曼初始数据的二维无压欧拉系统的黎曼问题。用凸积分法证明了二维黎曼问题存在无穷多个有界可容许弱解。同时,相应的一维(1D) Riemann问题在Oleĭnik的熵条件和附加能量条件下存在唯一的测量值解(δ-shock),这意味着不存在具有能量条件的一维有界可容许弱解(参见[19])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniqueness of admissible weak solutions to the two-dimensional pressureless Euler system
We study Riemann problem for the two-dimensional (2D) pressureless Euler system with planar Riemann initial data. It is proved that there exist infinitely many bounded admissible weak solutions to the 2D Riemann problem by the method of convex integration. Meanwhile, the corresponding one-dimensional (1D) Riemann problem admits a unique measure-valued solution (so-called δ-shock) under the Oleĭnik's entropy condition and an additional energy condition, which implies the non-existence of 1D bounded admissible weak solutions with energy condition (cf. [19]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信