{"title":"掺杂锑(Sb)的Bi2S3纳米棒薄膜用于光电化学水分解","authors":"U. Chalapathi , Nandarapu Purushotham Reddy , Salh Alhammadi , Razan A. Alshgari , Radhalayam Dhanalakshmi , Golkonda Srinivas Reddy , Sambasivam Sangaraju , Krithikaa Mohanarangam , Vasudeva Reddy Minnam Reddy , Chang-Hoi Ahn , Si-Hyun Park","doi":"10.1016/j.jssc.2024.125099","DOIUrl":null,"url":null,"abstract":"<div><div>Bi<sub>2</sub>S<sub>3</sub> is a promising material for photoelectrochemical (PEC) water splitting due to its favorable optoelectronic properties, abundance of non-toxic elements, and chemical stability. However, pure Bi<sub>2</sub>S<sub>3</sub> exhibits low photocurrent efficiency due to charge recombination and slow charge transport. To enhance its performance, we doped antimony (Sb) into the Bi<sub>2</sub>S<sub>3</sub> matrix, improving both its physical and PEC characteristics. The Sb doping concentration was varied from 0 to 3.1 at.% in Bi<sub>2</sub>S<sub>3</sub> films, which were fabricated through chemical bath deposition followed by annealing. Undoped Bi<sub>2</sub>S<sub>3</sub> formed nanorods with a direct bandgap of 1.26 eV and achieved a photocurrent density of 4.5 mA/cm<sup>2</sup> at 1.0 V vs Ag/AgCl. Sb doping at 0.9 at.% increased both crystallite size and nanorod density, resulting in a bandgap of 1.43 eV and a photocurrent density of 7.0 mA/cm<sup>2</sup>. At higher Sb concentrations (2.2 to 3.1 at.%), the nanorod size further increased, while the bandgap decreased to 1.20 eV, with a corresponding increase in photocurrent density to 8.6 mA/cm<sup>2</sup>. These results demonstrate that Sb doping significantly enhances the nanorod density, photocurrent, and stability of Bi<sub>2</sub>S<sub>3</sub> photoelectrodes.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"342 ","pages":"Article 125099"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimony (Sb)-doped Bi2S3 nanorod films for photoelectrochemical water splitting\",\"authors\":\"U. Chalapathi , Nandarapu Purushotham Reddy , Salh Alhammadi , Razan A. Alshgari , Radhalayam Dhanalakshmi , Golkonda Srinivas Reddy , Sambasivam Sangaraju , Krithikaa Mohanarangam , Vasudeva Reddy Minnam Reddy , Chang-Hoi Ahn , Si-Hyun Park\",\"doi\":\"10.1016/j.jssc.2024.125099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bi<sub>2</sub>S<sub>3</sub> is a promising material for photoelectrochemical (PEC) water splitting due to its favorable optoelectronic properties, abundance of non-toxic elements, and chemical stability. However, pure Bi<sub>2</sub>S<sub>3</sub> exhibits low photocurrent efficiency due to charge recombination and slow charge transport. To enhance its performance, we doped antimony (Sb) into the Bi<sub>2</sub>S<sub>3</sub> matrix, improving both its physical and PEC characteristics. The Sb doping concentration was varied from 0 to 3.1 at.% in Bi<sub>2</sub>S<sub>3</sub> films, which were fabricated through chemical bath deposition followed by annealing. Undoped Bi<sub>2</sub>S<sub>3</sub> formed nanorods with a direct bandgap of 1.26 eV and achieved a photocurrent density of 4.5 mA/cm<sup>2</sup> at 1.0 V vs Ag/AgCl. Sb doping at 0.9 at.% increased both crystallite size and nanorod density, resulting in a bandgap of 1.43 eV and a photocurrent density of 7.0 mA/cm<sup>2</sup>. At higher Sb concentrations (2.2 to 3.1 at.%), the nanorod size further increased, while the bandgap decreased to 1.20 eV, with a corresponding increase in photocurrent density to 8.6 mA/cm<sup>2</sup>. These results demonstrate that Sb doping significantly enhances the nanorod density, photocurrent, and stability of Bi<sub>2</sub>S<sub>3</sub> photoelectrodes.</div></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"342 \",\"pages\":\"Article 125099\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002245962400553X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002245962400553X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
Bi2S3具有良好的光电性能、丰富的无毒元素和化学稳定性,是一种很有前途的光电分解水材料。然而,由于电荷重组和缓慢的电荷传输,纯Bi2S3表现出较低的光电流效率。为了提高其性能,我们将锑(Sb)掺杂到Bi2S3基体中,改善其物理和PEC特性。Sb掺杂浓度在0 ~ 3.1 at范围内变化。通过化学浴沉积和退火制备Bi2S3薄膜。未掺杂的Bi2S3形成的纳米棒直接带隙为1.26 eV,在1.0 V vs Ag/AgCl下光电流密度为4.5 mA/cm2。某人在0.9秒时服用兴奋剂。晶粒尺寸和纳米棒密度均增加,带隙达到1.43 eV,光电流密度达到7.0 mA/cm2。在较高Sb浓度(2.2 ~ 3.1 At .%)下,纳米棒尺寸进一步增大,带隙减小到1.20 eV,光电流密度相应增加到8.6 mA/cm2。结果表明,Sb的掺杂显著提高了Bi2S3光电极的纳米棒密度、光电流和稳定性。
Antimony (Sb)-doped Bi2S3 nanorod films for photoelectrochemical water splitting
Bi2S3 is a promising material for photoelectrochemical (PEC) water splitting due to its favorable optoelectronic properties, abundance of non-toxic elements, and chemical stability. However, pure Bi2S3 exhibits low photocurrent efficiency due to charge recombination and slow charge transport. To enhance its performance, we doped antimony (Sb) into the Bi2S3 matrix, improving both its physical and PEC characteristics. The Sb doping concentration was varied from 0 to 3.1 at.% in Bi2S3 films, which were fabricated through chemical bath deposition followed by annealing. Undoped Bi2S3 formed nanorods with a direct bandgap of 1.26 eV and achieved a photocurrent density of 4.5 mA/cm2 at 1.0 V vs Ag/AgCl. Sb doping at 0.9 at.% increased both crystallite size and nanorod density, resulting in a bandgap of 1.43 eV and a photocurrent density of 7.0 mA/cm2. At higher Sb concentrations (2.2 to 3.1 at.%), the nanorod size further increased, while the bandgap decreased to 1.20 eV, with a corresponding increase in photocurrent density to 8.6 mA/cm2. These results demonstrate that Sb doping significantly enhances the nanorod density, photocurrent, and stability of Bi2S3 photoelectrodes.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.