{"title":"舒曼共振作为约束土卫六地下海洋深度的工具:惠更斯观测的重新评估和EFIELD/蜻蜓实验的准备","authors":"Paul Lagouanelle, Alice Le Gall","doi":"10.1016/j.icarus.2024.116372","DOIUrl":null,"url":null,"abstract":"<div><div>Among the lines of evidence for a buried ocean on Titan is the possible detection of Schumann-like Resonances (SR), in 2005, by the Permittivity, Wave and Altimetry (PWA) analyzer on board the ESA Huygens probe. SR are Extremely Low Frequency electromagnetic waves resonating between two electrically conductive layers. On Titan, it has been proposed that they propagate between the moon’s ionosphere and a salty subsurface water ocean. Their characterization by electric field sensors can provide constraints on Titan’s cavity characteristics and in particular on the depth of Titan’s ocean which is key to better assess Titan’s habitability. For this work we have developed a numerical model of Titan’s electromagnetic cavity as well as a surrogate model (i.e., an approximate mathematical model) able to accurately approximate the behavior of the cavity. This surrogate model can be used to conduct simulations and sensitivity analyses at a low computational cost. It is used both to re-assess PWA/Huygens measurements and to predict the future performance of the EFIELD experiment on board the NASA Dragonfly mission. We demonstrate that the PWA/Huygens measurements, in particular due to their low spectral resolution, do not bring any meaningful constraint on Titan’s ocean depth. On the other hand, the finer resolution of the EFIELD experiment and its ability to capture several harmonics of SR should provide more robust constraints on Titan’s internal structure, especially if the electrical properties of the ice crust and the atmosphere can be better constrained.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"428 ","pages":"Article 116372"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schumann Resonances as a tool to constrain the depth of Titan’s buried water ocean: Re-assessment of Huygens observations and preparation of the EFIELD/Dragonfly experiment\",\"authors\":\"Paul Lagouanelle, Alice Le Gall\",\"doi\":\"10.1016/j.icarus.2024.116372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Among the lines of evidence for a buried ocean on Titan is the possible detection of Schumann-like Resonances (SR), in 2005, by the Permittivity, Wave and Altimetry (PWA) analyzer on board the ESA Huygens probe. SR are Extremely Low Frequency electromagnetic waves resonating between two electrically conductive layers. On Titan, it has been proposed that they propagate between the moon’s ionosphere and a salty subsurface water ocean. Their characterization by electric field sensors can provide constraints on Titan’s cavity characteristics and in particular on the depth of Titan’s ocean which is key to better assess Titan’s habitability. For this work we have developed a numerical model of Titan’s electromagnetic cavity as well as a surrogate model (i.e., an approximate mathematical model) able to accurately approximate the behavior of the cavity. This surrogate model can be used to conduct simulations and sensitivity analyses at a low computational cost. It is used both to re-assess PWA/Huygens measurements and to predict the future performance of the EFIELD experiment on board the NASA Dragonfly mission. We demonstrate that the PWA/Huygens measurements, in particular due to their low spectral resolution, do not bring any meaningful constraint on Titan’s ocean depth. On the other hand, the finer resolution of the EFIELD experiment and its ability to capture several harmonics of SR should provide more robust constraints on Titan’s internal structure, especially if the electrical properties of the ice crust and the atmosphere can be better constrained.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":\"428 \",\"pages\":\"Article 116372\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524004329\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004329","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Schumann Resonances as a tool to constrain the depth of Titan’s buried water ocean: Re-assessment of Huygens observations and preparation of the EFIELD/Dragonfly experiment
Among the lines of evidence for a buried ocean on Titan is the possible detection of Schumann-like Resonances (SR), in 2005, by the Permittivity, Wave and Altimetry (PWA) analyzer on board the ESA Huygens probe. SR are Extremely Low Frequency electromagnetic waves resonating between two electrically conductive layers. On Titan, it has been proposed that they propagate between the moon’s ionosphere and a salty subsurface water ocean. Their characterization by electric field sensors can provide constraints on Titan’s cavity characteristics and in particular on the depth of Titan’s ocean which is key to better assess Titan’s habitability. For this work we have developed a numerical model of Titan’s electromagnetic cavity as well as a surrogate model (i.e., an approximate mathematical model) able to accurately approximate the behavior of the cavity. This surrogate model can be used to conduct simulations and sensitivity analyses at a low computational cost. It is used both to re-assess PWA/Huygens measurements and to predict the future performance of the EFIELD experiment on board the NASA Dragonfly mission. We demonstrate that the PWA/Huygens measurements, in particular due to their low spectral resolution, do not bring any meaningful constraint on Titan’s ocean depth. On the other hand, the finer resolution of the EFIELD experiment and its ability to capture several harmonics of SR should provide more robust constraints on Titan’s internal structure, especially if the electrical properties of the ice crust and the atmosphere can be better constrained.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.