环境条件下介质阻挡放电等离子体高效CO2加氢研究

Zhihao Zeng , Yujiao Li , Yunfei Ma , Xiaoqing Lin , Xiangbo Zou , Hao Zhang , Xiaodong Li , Qingyang Lin , Ming-Liang Qu , Zengyi Ma , Angjian Wu
{"title":"环境条件下介质阻挡放电等离子体高效CO2加氢研究","authors":"Zhihao Zeng ,&nbsp;Yujiao Li ,&nbsp;Yunfei Ma ,&nbsp;Xiaoqing Lin ,&nbsp;Xiangbo Zou ,&nbsp;Hao Zhang ,&nbsp;Xiaodong Li ,&nbsp;Qingyang Lin ,&nbsp;Ming-Liang Qu ,&nbsp;Zengyi Ma ,&nbsp;Angjian Wu","doi":"10.1016/j.gerr.2024.100102","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing utilization of CO<sub>2</sub> for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO<sub>2</sub> conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO<sub>2</sub> conversion rate increases with the increase of applied voltage and the decrease of CO<sub>2</sub>/H<sub>2</sub> ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO<sub>2</sub> conversion. On the one hand, the discharge gap has a significant role in the variation of CO<sub>2</sub> conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH<sub>4</sub>. This work will pave the way for a sustainable alternative towards future CO<sub>2</sub> conversion and utilization.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 4","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma\",\"authors\":\"Zhihao Zeng ,&nbsp;Yujiao Li ,&nbsp;Yunfei Ma ,&nbsp;Xiaoqing Lin ,&nbsp;Xiangbo Zou ,&nbsp;Hao Zhang ,&nbsp;Xiaodong Li ,&nbsp;Qingyang Lin ,&nbsp;Ming-Liang Qu ,&nbsp;Zengyi Ma ,&nbsp;Angjian Wu\",\"doi\":\"10.1016/j.gerr.2024.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing utilization of CO<sub>2</sub> for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO<sub>2</sub> conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO<sub>2</sub> conversion rate increases with the increase of applied voltage and the decrease of CO<sub>2</sub>/H<sub>2</sub> ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO<sub>2</sub> conversion. On the one hand, the discharge gap has a significant role in the variation of CO<sub>2</sub> conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH<sub>4</sub>. This work will pave the way for a sustainable alternative towards future CO<sub>2</sub> conversion and utilization.</div></div>\",\"PeriodicalId\":100597,\"journal\":{\"name\":\"Green Energy and Resources\",\"volume\":\"2 4\",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949720524000560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增加利用二氧化碳合成高价值燃料或基本化学品是减缓全球变暖和气候变化的潜在有效方法。与恶劣操作条件下(400 ~ 500°C, 10 MPa)的热催化CO2转化相比,非热等离子体可以克服动力学障碍,并在环境温度和压力下触发超过热平衡的反应。在本研究中,使用典型的圆柱形介质阻挡放电(DBD)等离子体,对工作条件(放电频率、输入功率和气体流速)和几何参数(放电长度、放电间隙和介质材料)的影响进行了广泛的分析。比较了不同工况下的放电特性变化(包括外加电压和电流波形),表明较高的外加电压和较低的气体流量可以增强细丝放电。结果表明:CO2转化率随施加电压的增大和CO2/H2比的减小而增大,在20 mL/min时达到最大值43.0%;当施加电压为5.5 kV、气体流速为40 mL/min时,CO的能量效率最高,为3771.9 μg/kJ。此外,等离子体反应器的结构也会影响CO2转化的性能。一方面,放电间隙对CO2转化率和产物选择性的变化有显著影响,这与电场密度和相应的电子诱导反应有关。另一方面,利用循环水冷却夹套考察反应温度的影响,使产物由CO转化为CH4。这项工作将为未来二氧化碳转化和利用的可持续替代方案铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma

Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
The increasing utilization of CO2 for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO2 conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO2 conversion rate increases with the increase of applied voltage and the decrease of CO2/H2 ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO2 conversion. On the one hand, the discharge gap has a significant role in the variation of CO2 conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH4. This work will pave the way for a sustainable alternative towards future CO2 conversion and utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信