Cn单位球中权加倍诱导Bergman空间上的Toeplitz算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Juntao Du , Bingyang Hu , Songxiao Li , Xiaojing Zhou
{"title":"Cn单位球中权加倍诱导Bergman空间上的Toeplitz算子","authors":"Juntao Du ,&nbsp;Bingyang Hu ,&nbsp;Songxiao Li ,&nbsp;Xiaojing Zhou","doi":"10.1016/j.jmaa.2024.129077","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the boundedness and compactness of the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span>, where the weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> are induced by (radially) doubling weights in the unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The equivalence between the boundedness and compactness of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> is also established under the assumption with <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>p</mi></math></span>. Our work extends the early work of Peláez, Rättyä, and Sierra to higher dimensions, as well as to a larger class of radial weights.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129077"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz operators on Bergman spaces induced by doubling weights in the unit ball of Cn\",\"authors\":\"Juntao Du ,&nbsp;Bingyang Hu ,&nbsp;Songxiao Li ,&nbsp;Xiaojing Zhou\",\"doi\":\"10.1016/j.jmaa.2024.129077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the boundedness and compactness of the Toeplitz operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span>, where the weighted Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> are induced by (radially) doubling weights in the unit ball of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. The equivalence between the boundedness and compactness of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>:</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>↦</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>ω</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> is also established under the assumption with <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>p</mi></math></span>. Our work extends the early work of Peláez, Rättyä, and Sierra to higher dimensions, as well as to a larger class of radial weights.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"544 2\",\"pages\":\"Article 129077\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009995\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009995","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了1<;p≤q时Toeplitz算子的有界性和紧性,其中加权Bergman空间Aωp是在Cn的单位球上(径向)加倍权引起的。在1<;q<;p的假设下,建立了Tμ:Aωp∈Aωq的有界性与紧性的等价性。我们的工作将Peláez、Rättyä和Sierra的早期工作扩展到更高的维度,以及更大类别的径向权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toeplitz operators on Bergman spaces induced by doubling weights in the unit ball of Cn
In this paper, we study the boundedness and compactness of the Toeplitz operator Tμ:AωpAωq for 1<pq, where the weighted Bergman spaces Aωp are induced by (radially) doubling weights in the unit ball of Cn. The equivalence between the boundedness and compactness of Tμ:AωpAωq is also established under the assumption with 1<q<p. Our work extends the early work of Peláez, Rättyä, and Sierra to higher dimensions, as well as to a larger class of radial weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信