对流阵列中粒子群实验的理论模型

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Imtiaz Ahmad
{"title":"对流阵列中粒子群实验的理论模型","authors":"Imtiaz Ahmad","doi":"10.1016/j.colsurfa.2024.135827","DOIUrl":null,"url":null,"abstract":"<div><div>Studying suspensions of gold nanorods has provided valuable knowledge on variations in concentration and how nanoparticles behave. Analysis of UV–visible spectra has shown changes in both longitudinal and transverse peaks, indicating a reduction in nanoparticle absorption peaks as the nanoparticle concentration decreases in suspension. Furthermore, changes in droplet contact angles have elucidated a direct correlation between nanoparticle density and droplet dynamics, shedding light on the intricate interplay between concentration reduction and droplet behavior. Investigations into cetyltrimethylammonium bromide (CTAB-coated) gold nanorods have unraveled the complexities of depletion, electrostatic, and Van der Waals forces, offering valuable knowledge on the self-assembly mechanisms governing these nanomaterials. The examination of interactions within coffee stain rings has underscored the crucial role of nanoparticle density in nanostructure arrangements, influencing deposition patterns and contributing to a deeper understanding of volume fraction evolution in nanostructured systems. By establishing a quantitative framework for interpreting energy parameters and observing optimal fitting agreements with experimental data, this research provides a solid foundation for future endeavors aimed at elucidating nanomaterial behavior in suspended systems. This comprehensive overview lays the groundwork for tailored manipulation of gold nanorod properties, emphasizing the essential relationship between density and contact angle in shaping wetting phenomena and surface engineering practices.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"707 ","pages":"Article 135827"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical models from experiments on particle population in convective arrays\",\"authors\":\"Imtiaz Ahmad\",\"doi\":\"10.1016/j.colsurfa.2024.135827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studying suspensions of gold nanorods has provided valuable knowledge on variations in concentration and how nanoparticles behave. Analysis of UV–visible spectra has shown changes in both longitudinal and transverse peaks, indicating a reduction in nanoparticle absorption peaks as the nanoparticle concentration decreases in suspension. Furthermore, changes in droplet contact angles have elucidated a direct correlation between nanoparticle density and droplet dynamics, shedding light on the intricate interplay between concentration reduction and droplet behavior. Investigations into cetyltrimethylammonium bromide (CTAB-coated) gold nanorods have unraveled the complexities of depletion, electrostatic, and Van der Waals forces, offering valuable knowledge on the self-assembly mechanisms governing these nanomaterials. The examination of interactions within coffee stain rings has underscored the crucial role of nanoparticle density in nanostructure arrangements, influencing deposition patterns and contributing to a deeper understanding of volume fraction evolution in nanostructured systems. By establishing a quantitative framework for interpreting energy parameters and observing optimal fitting agreements with experimental data, this research provides a solid foundation for future endeavors aimed at elucidating nanomaterial behavior in suspended systems. This comprehensive overview lays the groundwork for tailored manipulation of gold nanorod properties, emphasizing the essential relationship between density and contact angle in shaping wetting phenomena and surface engineering practices.</div></div>\",\"PeriodicalId\":278,\"journal\":{\"name\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"volume\":\"707 \",\"pages\":\"Article 135827\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces A: Physicochemical and Engineering Aspects\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927775724026918\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026918","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究金纳米棒的悬浮液提供了有关浓度变化和纳米颗粒行为的宝贵知识。紫外可见光谱分析显示,随着纳米颗粒浓度的降低,纳米颗粒的吸收峰在纵向和横向上都发生了变化。此外,液滴接触角的变化阐明了纳米颗粒密度与液滴动力学之间的直接关联,揭示了浓度降低与液滴行为之间复杂的相互作用。对十六烷基三甲基溴化铵(cab涂层)金纳米棒的研究揭示了损耗、静电和范德华力的复杂性,为控制这些纳米材料的自组装机制提供了有价值的知识。咖啡污渍环内相互作用的研究强调了纳米颗粒密度在纳米结构排列中的关键作用,影响沉积模式,并有助于对纳米结构系统中体积分数演变的更深入理解。通过建立解释能量参数的定量框架,并观察与实验数据的最佳拟合协议,本研究为未来阐明悬浮体系中纳米材料的行为提供了坚实的基础。这一全面的概述为定制金纳米棒特性的操作奠定了基础,强调了密度和接触角在形成润湿现象和表面工程实践中的基本关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical models from experiments on particle population in convective arrays
Studying suspensions of gold nanorods has provided valuable knowledge on variations in concentration and how nanoparticles behave. Analysis of UV–visible spectra has shown changes in both longitudinal and transverse peaks, indicating a reduction in nanoparticle absorption peaks as the nanoparticle concentration decreases in suspension. Furthermore, changes in droplet contact angles have elucidated a direct correlation between nanoparticle density and droplet dynamics, shedding light on the intricate interplay between concentration reduction and droplet behavior. Investigations into cetyltrimethylammonium bromide (CTAB-coated) gold nanorods have unraveled the complexities of depletion, electrostatic, and Van der Waals forces, offering valuable knowledge on the self-assembly mechanisms governing these nanomaterials. The examination of interactions within coffee stain rings has underscored the crucial role of nanoparticle density in nanostructure arrangements, influencing deposition patterns and contributing to a deeper understanding of volume fraction evolution in nanostructured systems. By establishing a quantitative framework for interpreting energy parameters and observing optimal fitting agreements with experimental data, this research provides a solid foundation for future endeavors aimed at elucidating nanomaterial behavior in suspended systems. This comprehensive overview lays the groundwork for tailored manipulation of gold nanorod properties, emphasizing the essential relationship between density and contact angle in shaping wetting phenomena and surface engineering practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信