GNPs增强两相非均匀FG压电复合材料的非线性三维电弹数值模拟

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Mohammad Malikan , Shahriar Dastjerdi , Magdalena Rucka , Mehran Kadkhodayan
{"title":"GNPs增强两相非均匀FG压电复合材料的非线性三维电弹数值模拟","authors":"Mohammad Malikan ,&nbsp;Shahriar Dastjerdi ,&nbsp;Magdalena Rucka ,&nbsp;Mehran Kadkhodayan","doi":"10.1016/j.ijengsci.2024.104174","DOIUrl":null,"url":null,"abstract":"<div><div>The novelty here comes from not only the perfect nonlinear three-dimensional (3D) electro-elasticity investigation but also the mixed material itself. The literature widely showed mechanical assessments on the piezoelectric structures; however, a lack of nonlinear three-dimensional elasticity studies has been witnessed on these kinds of smart materials. Therefore, a nonlinear 3D elasticity-piezoelectricity coupling is considered in this study. What is more, this research brings about an era in the field of sensing manufacturing such as sensors and actuators by proposing the construction of these devices in an advanced composite framework. The piezoelectric medium can be electro-mechanically improved with the aggregation of graphene platelets/nanoplatelets (GPLs/GNPs) based on the functionally graded (FG) composition. The assumption for such a smart composite has been made to provide higher flexibility smart tools while their elastic strength can also get further. To accomplish this, the derivation of a rigorous mathematical model has come out for a transversely isotropic inhomogeneous FG-piezoelectric beam-like sensor/actuator using 3D kinematic displacements, geometrically nonlinear strains, Lagrange technique, 3D stress-strains tensors, linear elastic material, and in particular Halpin-Tsai micro-mechanic model. Numerical modeling has been built by the generalized differential quadrature (GDQ) technique. A comprehensive parametric study has also been established for intelligent FG beams.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"207 ","pages":"Article 104174"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nonlinear 3D electro-elastic numerical modeling of two-phase inhomogeneous FG piezocomposites reinforced with GNPs\",\"authors\":\"Mohammad Malikan ,&nbsp;Shahriar Dastjerdi ,&nbsp;Magdalena Rucka ,&nbsp;Mehran Kadkhodayan\",\"doi\":\"10.1016/j.ijengsci.2024.104174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The novelty here comes from not only the perfect nonlinear three-dimensional (3D) electro-elasticity investigation but also the mixed material itself. The literature widely showed mechanical assessments on the piezoelectric structures; however, a lack of nonlinear three-dimensional elasticity studies has been witnessed on these kinds of smart materials. Therefore, a nonlinear 3D elasticity-piezoelectricity coupling is considered in this study. What is more, this research brings about an era in the field of sensing manufacturing such as sensors and actuators by proposing the construction of these devices in an advanced composite framework. The piezoelectric medium can be electro-mechanically improved with the aggregation of graphene platelets/nanoplatelets (GPLs/GNPs) based on the functionally graded (FG) composition. The assumption for such a smart composite has been made to provide higher flexibility smart tools while their elastic strength can also get further. To accomplish this, the derivation of a rigorous mathematical model has come out for a transversely isotropic inhomogeneous FG-piezoelectric beam-like sensor/actuator using 3D kinematic displacements, geometrically nonlinear strains, Lagrange technique, 3D stress-strains tensors, linear elastic material, and in particular Halpin-Tsai micro-mechanic model. Numerical modeling has been built by the generalized differential quadrature (GDQ) technique. A comprehensive parametric study has also been established for intelligent FG beams.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"207 \",\"pages\":\"Article 104174\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001587\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001587","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

其新颖之处不仅在于其完美的非线性三维电弹性研究,还在于混合材料本身。文献对压电结构进行了广泛的力学评价;然而,关于这类智能材料的非线性三维弹性研究一直缺乏。因此,本研究考虑了非线性三维弹性-压电耦合。更重要的是,本研究提出了在先进的复合材料框架中构建传感器和执行器等传感制造领域的一个时代。基于功能梯度(FG)组成的石墨烯片/纳米片(GPLs/GNPs)聚集可以改善压电介质的机电性能。这种智能复合材料的设想是在提供更高灵活性的智能工具的同时,其弹性强度也可以得到进一步提高。为此,本文利用三维运动位移、几何非线性应变、拉格朗日技术、三维应力-应变张量、线性弹性材料,特别是Halpin-Tsai微力学模型,推导了横向各向同性非均匀fg -压电类梁式传感器/执行器的严格数学模型。采用广义微分正交(GDQ)技术建立了数值模拟。对智能FG梁进行了全面的参数化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nonlinear 3D electro-elastic numerical modeling of two-phase inhomogeneous FG piezocomposites reinforced with GNPs
The novelty here comes from not only the perfect nonlinear three-dimensional (3D) electro-elasticity investigation but also the mixed material itself. The literature widely showed mechanical assessments on the piezoelectric structures; however, a lack of nonlinear three-dimensional elasticity studies has been witnessed on these kinds of smart materials. Therefore, a nonlinear 3D elasticity-piezoelectricity coupling is considered in this study. What is more, this research brings about an era in the field of sensing manufacturing such as sensors and actuators by proposing the construction of these devices in an advanced composite framework. The piezoelectric medium can be electro-mechanically improved with the aggregation of graphene platelets/nanoplatelets (GPLs/GNPs) based on the functionally graded (FG) composition. The assumption for such a smart composite has been made to provide higher flexibility smart tools while their elastic strength can also get further. To accomplish this, the derivation of a rigorous mathematical model has come out for a transversely isotropic inhomogeneous FG-piezoelectric beam-like sensor/actuator using 3D kinematic displacements, geometrically nonlinear strains, Lagrange technique, 3D stress-strains tensors, linear elastic material, and in particular Halpin-Tsai micro-mechanic model. Numerical modeling has been built by the generalized differential quadrature (GDQ) technique. A comprehensive parametric study has also been established for intelligent FG beams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信