基于酶催化的协同高支交联策略构建耐沸水阻燃木质复合材料

IF 5.8 2区 化学 Q1 POLYMER SCIENCE
Wenxuan Feng , Zhenqiang Kan , Aiyuan Lu , Hong Cao , Jinzhong Yao , Li Liu , Xiaoyang Chen , Kaimeng Xu , Guanben Du , Lianpeng Zhang
{"title":"基于酶催化的协同高支交联策略构建耐沸水阻燃木质复合材料","authors":"Wenxuan Feng ,&nbsp;Zhenqiang Kan ,&nbsp;Aiyuan Lu ,&nbsp;Hong Cao ,&nbsp;Jinzhong Yao ,&nbsp;Li Liu ,&nbsp;Xiaoyang Chen ,&nbsp;Kaimeng Xu ,&nbsp;Guanben Du ,&nbsp;Lianpeng Zhang","doi":"10.1016/j.eurpolymj.2024.113611","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of sustainable and regenerative environments, the development of a biomass-based laminated composites endowed with boiling water resistance and flame retardant capabilities holds paramount importance. First of all, a novel maleic anhydride-based polyamine (MAN) was designed and synthesized, characterized by its branched structure replete with numerous reactive sites. Subsequently, utilizing sucrose, MAN, and sucrase (I), a novel sucrose-based adhesive (S-I-MAN) was synthesized, capable of fostering a multifaceted chemical network through enzyme-catalyzed air oxidation cross-linking. And the enzyme-catalysed air oxidation reaction can provide a milder and more specific reaction pathway when catalysed by sucrase. Next, the laminated composites prepared from wood and biomass adhesive (S-I-MAN) exhibited excellent flame retardant properties by organic–inorganic surface modification using tannic acid (TA) and sodium perborate (NaBO<sub>3</sub>). Further research showed that potassium persulfate can effectively initiate the free radical polymerisation of the carbon–carbon double bond in S-I-MAN, increase the strength and stability of S-I-MAN, and make the laminated composites have more excellent mechanical properties. On the one hand this study developed a new organic–inorganic biomass-based composite adhesive. On the other hand, the surface modification of laminated composites with excellent flame retardant properties provided a new “organic-inorganic composite system with flame retardant” idea.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"222 ","pages":"Article 113611"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing boiling water resistant and flame-retardant wood composites based on enzyme catalyzed synergistic high branching crosslinking strategy\",\"authors\":\"Wenxuan Feng ,&nbsp;Zhenqiang Kan ,&nbsp;Aiyuan Lu ,&nbsp;Hong Cao ,&nbsp;Jinzhong Yao ,&nbsp;Li Liu ,&nbsp;Xiaoyang Chen ,&nbsp;Kaimeng Xu ,&nbsp;Guanben Du ,&nbsp;Lianpeng Zhang\",\"doi\":\"10.1016/j.eurpolymj.2024.113611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the realm of sustainable and regenerative environments, the development of a biomass-based laminated composites endowed with boiling water resistance and flame retardant capabilities holds paramount importance. First of all, a novel maleic anhydride-based polyamine (MAN) was designed and synthesized, characterized by its branched structure replete with numerous reactive sites. Subsequently, utilizing sucrose, MAN, and sucrase (I), a novel sucrose-based adhesive (S-I-MAN) was synthesized, capable of fostering a multifaceted chemical network through enzyme-catalyzed air oxidation cross-linking. And the enzyme-catalysed air oxidation reaction can provide a milder and more specific reaction pathway when catalysed by sucrase. Next, the laminated composites prepared from wood and biomass adhesive (S-I-MAN) exhibited excellent flame retardant properties by organic–inorganic surface modification using tannic acid (TA) and sodium perborate (NaBO<sub>3</sub>). Further research showed that potassium persulfate can effectively initiate the free radical polymerisation of the carbon–carbon double bond in S-I-MAN, increase the strength and stability of S-I-MAN, and make the laminated composites have more excellent mechanical properties. On the one hand this study developed a new organic–inorganic biomass-based composite adhesive. On the other hand, the surface modification of laminated composites with excellent flame retardant properties provided a new “organic-inorganic composite system with flame retardant” idea.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"222 \",\"pages\":\"Article 113611\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724008723\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008723","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在可持续和再生环境领域,开发具有耐沸水和阻燃能力的生物质基层压复合材料具有至关重要的意义。首先,设计并合成了一种新型的马来酸酐基多胺(MAN),其特点是支链结构中含有大量的反应位点。随后,利用蔗糖、MAN和蔗糖酶(I)合成了一种新型的蔗糖基粘合剂(S-I-MAN),能够通过酶催化的空气氧化交联形成一个多方面的化学网络。而酶催化的空气氧化反应在蔗糖酶的催化下可以提供更温和、更特异的反应途径。其次,采用单宁酸(TA)和过硼酸钠(NaBO3)对木材和生物质胶粘剂(S-I-MAN)复合材料进行有机-无机表面改性,制备出优异的阻燃性能。进一步研究表明,过硫酸钾能有效引发S-I-MAN中碳-碳双键的自由基聚合,提高S-I-MAN的强度和稳定性,使层合复合材料具有更优异的力学性能。本研究一方面开发了一种新型的有机-无机生物质基复合胶粘剂。另一方面,具有优异阻燃性能的层合复合材料的表面改性为“有机-无机复合材料体系阻燃”提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Constructing boiling water resistant and flame-retardant wood composites based on enzyme catalyzed synergistic high branching crosslinking strategy

Constructing boiling water resistant and flame-retardant wood composites based on enzyme catalyzed synergistic high branching crosslinking strategy
In the realm of sustainable and regenerative environments, the development of a biomass-based laminated composites endowed with boiling water resistance and flame retardant capabilities holds paramount importance. First of all, a novel maleic anhydride-based polyamine (MAN) was designed and synthesized, characterized by its branched structure replete with numerous reactive sites. Subsequently, utilizing sucrose, MAN, and sucrase (I), a novel sucrose-based adhesive (S-I-MAN) was synthesized, capable of fostering a multifaceted chemical network through enzyme-catalyzed air oxidation cross-linking. And the enzyme-catalysed air oxidation reaction can provide a milder and more specific reaction pathway when catalysed by sucrase. Next, the laminated composites prepared from wood and biomass adhesive (S-I-MAN) exhibited excellent flame retardant properties by organic–inorganic surface modification using tannic acid (TA) and sodium perborate (NaBO3). Further research showed that potassium persulfate can effectively initiate the free radical polymerisation of the carbon–carbon double bond in S-I-MAN, increase the strength and stability of S-I-MAN, and make the laminated composites have more excellent mechanical properties. On the one hand this study developed a new organic–inorganic biomass-based composite adhesive. On the other hand, the surface modification of laminated composites with excellent flame retardant properties provided a new “organic-inorganic composite system with flame retardant” idea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信