{"title":"植物性农药对香蕉果实瘢痕甲虫的杀虫效果及体外分析","authors":"Velavan Viswakethu , Vinitha Ramasamy , Padmanaban Balakrishnan , Baskar Narayanasamy , Raju Karthic","doi":"10.1016/j.napere.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><div>Secondary metabolic compounds were investigated on the various insecticides from plants based on extraction and profile identified on various toxic substances. Generally, interactions between insects and plants lead to the release of various biochemical components pivotal in secondary metabolic processes and in insect defense against stimuli or insecticides. This study highlighted the efficacy of botanical pesticides containing bioactive chemicals as insecticides, operating through mechanisms such as antifeedants, repellents, protectants, and growth-disrupting hormones. Thus, secondary metabolic activity was confirmed to exhibit insecticidal properties, including the emission of signalling cues such as 2,4-Decadienal, Pterin-6-carboxylic acid, Oleic Acid, 9-Octadecenoic acid (E), and Stearic acid. Meanwhile, Principal component analysis was used to assessed the distribution of metabolites resulting from plant-insect interactions. Additionally, putative toxic substances were confirmed in repellent assays, affirming that botanical blends enhanced certain plant defenses against banana pests. Further understanding of these components and their varying efficacy levels under different conditions may be crucial in developing bio-rational control against <em>B. subcostata</em> under <em>in vitro</em> conditions. The current study aims to examine certain plant extracts as natural enemies and alternatives against the banana fruit scarring beetle <em>B. subcostata</em> under <em>in vitro</em> conditions.</div></div>","PeriodicalId":100809,"journal":{"name":"Journal of Natural Pesticide Research","volume":"11 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of botanical pesticides in insecticidal activity against the banana fruit scarring beetle Basilepta subcostata an In vitro analysis\",\"authors\":\"Velavan Viswakethu , Vinitha Ramasamy , Padmanaban Balakrishnan , Baskar Narayanasamy , Raju Karthic\",\"doi\":\"10.1016/j.napere.2024.100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Secondary metabolic compounds were investigated on the various insecticides from plants based on extraction and profile identified on various toxic substances. Generally, interactions between insects and plants lead to the release of various biochemical components pivotal in secondary metabolic processes and in insect defense against stimuli or insecticides. This study highlighted the efficacy of botanical pesticides containing bioactive chemicals as insecticides, operating through mechanisms such as antifeedants, repellents, protectants, and growth-disrupting hormones. Thus, secondary metabolic activity was confirmed to exhibit insecticidal properties, including the emission of signalling cues such as 2,4-Decadienal, Pterin-6-carboxylic acid, Oleic Acid, 9-Octadecenoic acid (E), and Stearic acid. Meanwhile, Principal component analysis was used to assessed the distribution of metabolites resulting from plant-insect interactions. Additionally, putative toxic substances were confirmed in repellent assays, affirming that botanical blends enhanced certain plant defenses against banana pests. Further understanding of these components and their varying efficacy levels under different conditions may be crucial in developing bio-rational control against <em>B. subcostata</em> under <em>in vitro</em> conditions. The current study aims to examine certain plant extracts as natural enemies and alternatives against the banana fruit scarring beetle <em>B. subcostata</em> under <em>in vitro</em> conditions.</div></div>\",\"PeriodicalId\":100809,\"journal\":{\"name\":\"Journal of Natural Pesticide Research\",\"volume\":\"11 \",\"pages\":\"Article 100101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Pesticide Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773078624000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Pesticide Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773078624000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficacy of botanical pesticides in insecticidal activity against the banana fruit scarring beetle Basilepta subcostata an In vitro analysis
Secondary metabolic compounds were investigated on the various insecticides from plants based on extraction and profile identified on various toxic substances. Generally, interactions between insects and plants lead to the release of various biochemical components pivotal in secondary metabolic processes and in insect defense against stimuli or insecticides. This study highlighted the efficacy of botanical pesticides containing bioactive chemicals as insecticides, operating through mechanisms such as antifeedants, repellents, protectants, and growth-disrupting hormones. Thus, secondary metabolic activity was confirmed to exhibit insecticidal properties, including the emission of signalling cues such as 2,4-Decadienal, Pterin-6-carboxylic acid, Oleic Acid, 9-Octadecenoic acid (E), and Stearic acid. Meanwhile, Principal component analysis was used to assessed the distribution of metabolites resulting from plant-insect interactions. Additionally, putative toxic substances were confirmed in repellent assays, affirming that botanical blends enhanced certain plant defenses against banana pests. Further understanding of these components and their varying efficacy levels under different conditions may be crucial in developing bio-rational control against B. subcostata under in vitro conditions. The current study aims to examine certain plant extracts as natural enemies and alternatives against the banana fruit scarring beetle B. subcostata under in vitro conditions.