高阶VII的Drinfeld模形式:在边界处的展开式

IF 0.6 3区 数学 Q3 MATHEMATICS
Ernst-Ulrich Gekeler
{"title":"高阶VII的Drinfeld模形式:在边界处的展开式","authors":"Ernst-Ulrich Gekeler","doi":"10.1016/j.jnt.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>We study expansions of Drinfeld modular forms of rank <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> along the boundary of moduli varieties. Product formulas for the discriminant forms <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are developed, which are analogous with Jacobi's formula for the classical elliptic discriminant. The vanishing orders are described through values at <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>−</mo><mi>r</mi></math></span> of partial zeta functions of the underlying Drinfeld coefficient ring <em>A</em>. We show linear independence properties for Eisenstein series, which allow to split spaces of modular forms into the subspaces of cusp forms and of Eisenstein series, and give various characterizations of the boundary condition for modular forms.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"269 ","pages":"Pages 260-340"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Drinfeld modular forms of higher rank VII: Expansions at the boundary\",\"authors\":\"Ernst-Ulrich Gekeler\",\"doi\":\"10.1016/j.jnt.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study expansions of Drinfeld modular forms of rank <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> along the boundary of moduli varieties. Product formulas for the discriminant forms <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are developed, which are analogous with Jacobi's formula for the classical elliptic discriminant. The vanishing orders are described through values at <span><math><mi>s</mi><mo>=</mo><mn>1</mn><mo>−</mo><mi>r</mi></math></span> of partial zeta functions of the underlying Drinfeld coefficient ring <em>A</em>. We show linear independence properties for Eisenstein series, which allow to split spaces of modular forms into the subspaces of cusp forms and of Eisenstein series, and give various characterizations of the boundary condition for modular forms.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"269 \",\"pages\":\"Pages 260-340\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24002269\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24002269","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究秩r≥2的Drinfeld模形式沿模变体边界的展开式。建立了判别式Δn的乘积公式,与经典椭圆判别式的Jacobi公式类似。通过在s=1−r处的Drinfeld系数环a的偏zeta函数的消失阶来描述。我们证明了爱森斯坦级数的线性无关性,它允许将模形式的空间划分为尖形和爱森斯坦级数的子空间,并给出了模形式的边界条件的各种表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Drinfeld modular forms of higher rank VII: Expansions at the boundary
We study expansions of Drinfeld modular forms of rank r2 along the boundary of moduli varieties. Product formulas for the discriminant forms Δn are developed, which are analogous with Jacobi's formula for the classical elliptic discriminant. The vanishing orders are described through values at s=1r of partial zeta functions of the underlying Drinfeld coefficient ring A. We show linear independence properties for Eisenstein series, which allow to split spaces of modular forms into the subspaces of cusp forms and of Eisenstein series, and give various characterizations of the boundary condition for modular forms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信