{"title":"环面上二维Navier-Stokes方程的高度奇异(频繁稀疏)稳态解","authors":"Pierre Gilles Lemarié-Rieusset","doi":"10.1016/j.jfa.2024.110761","DOIUrl":null,"url":null,"abstract":"<div><div>We construct non-trivial steady solutions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for the 2D Navier–Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to introduce a notion of special (non square integrable) solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 4","pages":"Article 110761"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly singular (frequentially sparse) steady solutions for the 2D Navier–Stokes equations on the torus\",\"authors\":\"Pierre Gilles Lemarié-Rieusset\",\"doi\":\"10.1016/j.jfa.2024.110761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct non-trivial steady solutions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for the 2D Navier–Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to introduce a notion of special (non square integrable) solutions.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 4\",\"pages\":\"Article 110761\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400449X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400449X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Highly singular (frequentially sparse) steady solutions for the 2D Navier–Stokes equations on the torus
We construct non-trivial steady solutions in for the 2D Navier–Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to introduce a notion of special (non square integrable) solutions.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis