迹冯诺依曼代数的顺序交换

IF 1.7 2区 数学 Q1 MATHEMATICS
Srivatsav Kunnawalkam Elayavalli, Gregory Patchell
{"title":"迹冯诺依曼代数的顺序交换","authors":"Srivatsav Kunnawalkam Elayavalli,&nbsp;Gregory Patchell","doi":"10.1016/j.jfa.2024.110719","DOIUrl":null,"url":null,"abstract":"<div><div>Recall that a unitary in a tracial von Neumann algebra is Haar if <span><math><mi>τ</mi><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. We introduce and study a new Borel equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> on the set of Haar unitaries in a diffuse tracial von Neumann algebra <em>N</em>. Two Haar unitaries <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> in <span><math><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>U</mi></mrow></msup></math></span>, beginning at <em>u</em> and ending at <em>v</em>. We show that for any diffuse tracial von Neumann algebra <em>N</em>, the equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> and also show the existence of non-Gamma II<sub>1</sub> factors so that <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits only 1 orbit. Examples where <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits uncountably many orbits include <em>N</em> having positive 1-bounded entropy: <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>. As a key example, we explicitly describe <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>L</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></msub></math></span> for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if <em>N</em> admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products <em>N</em> of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the <span><span>[12]</span></span> exotic factors, despite satisfying <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 4","pages":"Article 110719"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential commutation in tracial von Neumann algebras\",\"authors\":\"Srivatsav Kunnawalkam Elayavalli,&nbsp;Gregory Patchell\",\"doi\":\"10.1016/j.jfa.2024.110719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recall that a unitary in a tracial von Neumann algebra is Haar if <span><math><mi>τ</mi><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. We introduce and study a new Borel equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> on the set of Haar unitaries in a diffuse tracial von Neumann algebra <em>N</em>. Two Haar unitaries <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> in <span><math><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>U</mi></mrow></msup></math></span>, beginning at <em>u</em> and ending at <em>v</em>. We show that for any diffuse tracial von Neumann algebra <em>N</em>, the equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> and also show the existence of non-Gamma II<sub>1</sub> factors so that <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits only 1 orbit. Examples where <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits uncountably many orbits include <em>N</em> having positive 1-bounded entropy: <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>. As a key example, we explicitly describe <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>L</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></msub></math></span> for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if <em>N</em> admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products <em>N</em> of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the <span><span>[12]</span></span> exotic factors, despite satisfying <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 4\",\"pages\":\"Article 110719\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004075\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

回想一下,当对所有n∈n τ(un)=0时,迹von Neumann代数中的酉是Haar。我们在扩散迹迹冯·诺伊曼代数N中的Haar酉集上引入并研究了一个新的Borel等价关系~ N,如果在超幂次NU中存在从u开始到v结束的顺序交换Haar酉集的有限路径,则u (N)中的两个Haar酉集u,v是相关的。我们证明了对于任何扩散迹迹冯·诺伊曼代数N,等价关系~ N允许1个轨道或不可数多个轨道。我们用~ N的路径长度和轨道数来描述性质Gamma,并且还证明了非Gamma II1因子的存在,因此~ N只允许1个轨道。在~ N允许不可数轨道的例子中,N有正的1界熵:h(N)>0。作为一个关键的例子,我们明确地描述了自由群因子的~ L(Ft)。利用这些思想,我们引入了漫射迹迹冯·诺伊曼代数的一个自然数值不变量,称为交换直径,并将其应用于初等等价分类。这将计算相关一元上最小路径长度的最大值。我们证明了如果N允许一个轨道,那么换易直径是有限的,并且是初等等价不变量。通过研究超功率中某些换向子的升力的精细技术结构,得到了底图连通且直径至少为4的漫射迹迹von Neumann代数的任意图积N族的非平凡下界,并在满足h(N)≤0的情况下,将其与[12]奇异因子区分为初等等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential commutation in tracial von Neumann algebras
Recall that a unitary in a tracial von Neumann algebra is Haar if τ(un)=0 for all nN. We introduce and study a new Borel equivalence relation N on the set of Haar unitaries in a diffuse tracial von Neumann algebra N. Two Haar unitaries u,v in U(N) are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower NU, beginning at u and ending at v. We show that for any diffuse tracial von Neumann algebra N, the equivalence relation N admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of N and also show the existence of non-Gamma II1 factors so that N admits only 1 orbit. Examples where N admits uncountably many orbits include N having positive 1-bounded entropy: h(N)>0. As a key example, we explicitly describe L(Ft) for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if N admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products N of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the [12] exotic factors, despite satisfying h(N)0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信