{"title":"迹冯诺依曼代数的顺序交换","authors":"Srivatsav Kunnawalkam Elayavalli, Gregory Patchell","doi":"10.1016/j.jfa.2024.110719","DOIUrl":null,"url":null,"abstract":"<div><div>Recall that a unitary in a tracial von Neumann algebra is Haar if <span><math><mi>τ</mi><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. We introduce and study a new Borel equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> on the set of Haar unitaries in a diffuse tracial von Neumann algebra <em>N</em>. Two Haar unitaries <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> in <span><math><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>U</mi></mrow></msup></math></span>, beginning at <em>u</em> and ending at <em>v</em>. We show that for any diffuse tracial von Neumann algebra <em>N</em>, the equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> and also show the existence of non-Gamma II<sub>1</sub> factors so that <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits only 1 orbit. Examples where <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits uncountably many orbits include <em>N</em> having positive 1-bounded entropy: <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>. As a key example, we explicitly describe <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>L</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></msub></math></span> for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if <em>N</em> admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products <em>N</em> of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the <span><span>[12]</span></span> exotic factors, despite satisfying <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 4","pages":"Article 110719"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential commutation in tracial von Neumann algebras\",\"authors\":\"Srivatsav Kunnawalkam Elayavalli, Gregory Patchell\",\"doi\":\"10.1016/j.jfa.2024.110719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recall that a unitary in a tracial von Neumann algebra is Haar if <span><math><mi>τ</mi><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. We introduce and study a new Borel equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> on the set of Haar unitaries in a diffuse tracial von Neumann algebra <em>N</em>. Two Haar unitaries <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> in <span><math><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower <span><math><msup><mrow><mi>N</mi></mrow><mrow><mi>U</mi></mrow></msup></math></span>, beginning at <em>u</em> and ending at <em>v</em>. We show that for any diffuse tracial von Neumann algebra <em>N</em>, the equivalence relation <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> and also show the existence of non-Gamma II<sub>1</sub> factors so that <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits only 1 orbit. Examples where <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>N</mi></mrow></msub></math></span> admits uncountably many orbits include <em>N</em> having positive 1-bounded entropy: <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>. As a key example, we explicitly describe <span><math><msub><mrow><mo>∼</mo></mrow><mrow><mi>L</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></msub></math></span> for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if <em>N</em> admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products <em>N</em> of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the <span><span>[12]</span></span> exotic factors, despite satisfying <span><math><mi>h</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 4\",\"pages\":\"Article 110719\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004075\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sequential commutation in tracial von Neumann algebras
Recall that a unitary in a tracial von Neumann algebra is Haar if for all . We introduce and study a new Borel equivalence relation on the set of Haar unitaries in a diffuse tracial von Neumann algebra N. Two Haar unitaries in are related if there exists a finite path of sequentially commuting Haar unitaries in an ultrapower , beginning at u and ending at v. We show that for any diffuse tracial von Neumann algebra N, the equivalence relation admits either 1 orbit or uncountably many orbits. We characterize property Gamma in terms of path length and number of orbits of and also show the existence of non-Gamma II1 factors so that admits only 1 orbit. Examples where admits uncountably many orbits include N having positive 1-bounded entropy: . As a key example, we explicitly describe for the free group factors. Using these ideas we introduce a natural numerical invariant for diffuse tracial von Neumann algebras called the commutation diameter, with applications to elementary equivalence classification. This computes the largest value of the minimal path length over related unitaries. We show that if N admits one orbit, then the commutation diameter is finite and moreover is an elementary equivalence invariant. By studying the finer technical structure of lifts of certain commutators in ultrapowers we obtain non-trivial lower bounds for the family of arbitrary graph products N of diffuse tracial von Neumann algebras whose underlying graph is connected and has diameter at least 4, and distinguish them up to elementary equivalence from the [12] exotic factors, despite satisfying .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis