Thien Trung Luu , Hai Anh Thi Le , Yoonsang Ra , Teklebrahan Gebrekrstos Weldemhret , Hwiyoung Kim , Kyungwho Choi , Dongwhi Choi , Dukhyun Choi , Yong Tae Park
{"title":"基于优化摩擦电气化和机器学习的多模态人体运动识别的石墨烯-水凝胶纳米复合材料","authors":"Thien Trung Luu , Hai Anh Thi Le , Yoonsang Ra , Teklebrahan Gebrekrstos Weldemhret , Hwiyoung Kim , Kyungwho Choi , Dongwhi Choi , Dukhyun Choi , Yong Tae Park","doi":"10.1016/j.compositesb.2024.111997","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels have extensive applications in portable, flexible, wearable, and self-powered electronic devices based on triboelectric nanogenerators (TENGs). An important issue with hydrogels is their tendency to dehydrate over time, which leads to a decline in both ionic conductivity and mechanical flexibility. Furthermore, the current techniques used to produce these hydrogels mostly rely on the freeze–thaw process, which has limited ability to modify the polymer conformation. Herein, a novel water-assisted recovered hydrogel is proposed using a simple strategy to prepare high-performance hydrogel-based TENGs by optimizing the cross-linking and crystalline domains. Synthesis of the electrostatic electrode in the TENG involved the incorporation of polyethylene oxide (PEO) into a polyvinyl alcohol (PVA) hydrogel network via cross-linking. Graphene nanoplatelets (GNP) were added to precisely tune the electrical conductivity. GNP constructs the backbone structures in the hydrogel and enhances the charge transport capacity. Electrical conductivity is changed by the GNP concentration and thus, electrical output of the hydrogel can be facilely controlled. The water reabsorption increased density and crystallinity of the cross-linking and allowed the hydrogel to show superior performance compared to the original one. The 7th recovery hydrogel produced around 594 V, 40 μA, and 32 nC. The 7th recovery hydrogel had exceptional endurance, with the capacity to withstand over 16,000 cycles of contact separation. Moreover, it could be stretched up to 541 % of its original length and improved by almost twice as much as that without the recovery process. By combining multi-modal graphene-based TENG sensors with machine learning, a state-of-the-art behavioral monitoring system was created that could reliably detect tapping fingers with an average accuracy rate of 95 %. The findings of this research will pave the way for new approaches to the development of autonomous motion sensors and flexible renewable energy sources.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 111997"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovered graphene-hydrogel nanocomposites for multi-modal human motion recognition via optimized triboelectrification and machine learning\",\"authors\":\"Thien Trung Luu , Hai Anh Thi Le , Yoonsang Ra , Teklebrahan Gebrekrstos Weldemhret , Hwiyoung Kim , Kyungwho Choi , Dongwhi Choi , Dukhyun Choi , Yong Tae Park\",\"doi\":\"10.1016/j.compositesb.2024.111997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogels have extensive applications in portable, flexible, wearable, and self-powered electronic devices based on triboelectric nanogenerators (TENGs). An important issue with hydrogels is their tendency to dehydrate over time, which leads to a decline in both ionic conductivity and mechanical flexibility. Furthermore, the current techniques used to produce these hydrogels mostly rely on the freeze–thaw process, which has limited ability to modify the polymer conformation. Herein, a novel water-assisted recovered hydrogel is proposed using a simple strategy to prepare high-performance hydrogel-based TENGs by optimizing the cross-linking and crystalline domains. Synthesis of the electrostatic electrode in the TENG involved the incorporation of polyethylene oxide (PEO) into a polyvinyl alcohol (PVA) hydrogel network via cross-linking. Graphene nanoplatelets (GNP) were added to precisely tune the electrical conductivity. GNP constructs the backbone structures in the hydrogel and enhances the charge transport capacity. Electrical conductivity is changed by the GNP concentration and thus, electrical output of the hydrogel can be facilely controlled. The water reabsorption increased density and crystallinity of the cross-linking and allowed the hydrogel to show superior performance compared to the original one. The 7th recovery hydrogel produced around 594 V, 40 μA, and 32 nC. The 7th recovery hydrogel had exceptional endurance, with the capacity to withstand over 16,000 cycles of contact separation. Moreover, it could be stretched up to 541 % of its original length and improved by almost twice as much as that without the recovery process. By combining multi-modal graphene-based TENG sensors with machine learning, a state-of-the-art behavioral monitoring system was created that could reliably detect tapping fingers with an average accuracy rate of 95 %. The findings of this research will pave the way for new approaches to the development of autonomous motion sensors and flexible renewable energy sources.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"291 \",\"pages\":\"Article 111997\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824008102\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008102","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Recovered graphene-hydrogel nanocomposites for multi-modal human motion recognition via optimized triboelectrification and machine learning
Hydrogels have extensive applications in portable, flexible, wearable, and self-powered electronic devices based on triboelectric nanogenerators (TENGs). An important issue with hydrogels is their tendency to dehydrate over time, which leads to a decline in both ionic conductivity and mechanical flexibility. Furthermore, the current techniques used to produce these hydrogels mostly rely on the freeze–thaw process, which has limited ability to modify the polymer conformation. Herein, a novel water-assisted recovered hydrogel is proposed using a simple strategy to prepare high-performance hydrogel-based TENGs by optimizing the cross-linking and crystalline domains. Synthesis of the electrostatic electrode in the TENG involved the incorporation of polyethylene oxide (PEO) into a polyvinyl alcohol (PVA) hydrogel network via cross-linking. Graphene nanoplatelets (GNP) were added to precisely tune the electrical conductivity. GNP constructs the backbone structures in the hydrogel and enhances the charge transport capacity. Electrical conductivity is changed by the GNP concentration and thus, electrical output of the hydrogel can be facilely controlled. The water reabsorption increased density and crystallinity of the cross-linking and allowed the hydrogel to show superior performance compared to the original one. The 7th recovery hydrogel produced around 594 V, 40 μA, and 32 nC. The 7th recovery hydrogel had exceptional endurance, with the capacity to withstand over 16,000 cycles of contact separation. Moreover, it could be stretched up to 541 % of its original length and improved by almost twice as much as that without the recovery process. By combining multi-modal graphene-based TENG sensors with machine learning, a state-of-the-art behavioral monitoring system was created that could reliably detect tapping fingers with an average accuracy rate of 95 %. The findings of this research will pave the way for new approaches to the development of autonomous motion sensors and flexible renewable energy sources.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.