Yuanbing Zou , Qingjie Zhao , Prodip Kumar Sarker , Shanshan Li , Lei Wang , Wangwang Liu
{"title":"基于扩散的弱监督时间动作定位框架","authors":"Yuanbing Zou , Qingjie Zhao , Prodip Kumar Sarker , Shanshan Li , Lei Wang , Wangwang Liu","doi":"10.1016/j.patcog.2024.111207","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly supervised temporal action localization aims to localize action instances with only video-level supervision. Due to the absence of frame-level annotation supervision, how effectively separate action snippets and backgrounds from semantically ambiguous features becomes an arduous challenge for this task. To address this issue from a generative modeling perspective, we propose a novel diffusion-based network with two stages. Firstly, we design a local masking mechanism module to learn the local semantic information and generate binary masks at the early stage, which (1) are used to perform action-background separation and (2) serve as pseudo-ground truth required by the diffusion module. Then, we propose a diffusion module to generate high-quality action predictions under the pseudo-ground truth supervision in the second stage. In addition, we further optimize the new-refining operation in the local masking module to improve the operation efficiency. The experimental results demonstrate that the proposed method achieves a promising performance on the publicly available mainstream datasets THUMOS14 and ActivityNet. The code is available at <span><span>https://github.com/Rlab123/action_diff</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111207"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-based framework for weakly-supervised temporal action localization\",\"authors\":\"Yuanbing Zou , Qingjie Zhao , Prodip Kumar Sarker , Shanshan Li , Lei Wang , Wangwang Liu\",\"doi\":\"10.1016/j.patcog.2024.111207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Weakly supervised temporal action localization aims to localize action instances with only video-level supervision. Due to the absence of frame-level annotation supervision, how effectively separate action snippets and backgrounds from semantically ambiguous features becomes an arduous challenge for this task. To address this issue from a generative modeling perspective, we propose a novel diffusion-based network with two stages. Firstly, we design a local masking mechanism module to learn the local semantic information and generate binary masks at the early stage, which (1) are used to perform action-background separation and (2) serve as pseudo-ground truth required by the diffusion module. Then, we propose a diffusion module to generate high-quality action predictions under the pseudo-ground truth supervision in the second stage. In addition, we further optimize the new-refining operation in the local masking module to improve the operation efficiency. The experimental results demonstrate that the proposed method achieves a promising performance on the publicly available mainstream datasets THUMOS14 and ActivityNet. The code is available at <span><span>https://github.com/Rlab123/action_diff</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"160 \",\"pages\":\"Article 111207\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324009580\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009580","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Diffusion-based framework for weakly-supervised temporal action localization
Weakly supervised temporal action localization aims to localize action instances with only video-level supervision. Due to the absence of frame-level annotation supervision, how effectively separate action snippets and backgrounds from semantically ambiguous features becomes an arduous challenge for this task. To address this issue from a generative modeling perspective, we propose a novel diffusion-based network with two stages. Firstly, we design a local masking mechanism module to learn the local semantic information and generate binary masks at the early stage, which (1) are used to perform action-background separation and (2) serve as pseudo-ground truth required by the diffusion module. Then, we propose a diffusion module to generate high-quality action predictions under the pseudo-ground truth supervision in the second stage. In addition, we further optimize the new-refining operation in the local masking module to improve the operation efficiency. The experimental results demonstrate that the proposed method achieves a promising performance on the publicly available mainstream datasets THUMOS14 and ActivityNet. The code is available at https://github.com/Rlab123/action_diff.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.