抛物线连接

IF 0.8 2区 数学 Q2 MATHEMATICS
Zakaria Ouaras
{"title":"抛物线连接","authors":"Zakaria Ouaras","doi":"10.1016/j.jalgebra.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present an algebro-geometric construction of the Hitchin connection in the parabolic setting for a fixed determinant line bundle. Our strategy is based on Hecke modifications, where we provide a decomposition formula for the parabolic determinant line bundle and the canonical line bundle of the moduli space of parabolic bundles. As a special case, we construct a Hitchin connection on the moduli space of vector bundles with fixed, not necessarily trivial, determinant.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 628-678"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parabolic Hitchin connection\",\"authors\":\"Zakaria Ouaras\",\"doi\":\"10.1016/j.jalgebra.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present an algebro-geometric construction of the Hitchin connection in the parabolic setting for a fixed determinant line bundle. Our strategy is based on Hecke modifications, where we provide a decomposition formula for the parabolic determinant line bundle and the canonical line bundle of the moduli space of parabolic bundles. As a special case, we construct a Hitchin connection on the moduli space of vector bundles with fixed, not necessarily trivial, determinant.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"665 \",\"pages\":\"Pages 628-678\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002186932400615X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932400615X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一类固定行列式线束抛物情形下的Hitchin连接的一个代数-几何构造。我们的策略是基于Hecke修正,在Hecke修正中,我们给出了抛物束模空间的抛物型行列式线束和规范线束的分解公式。作为一种特殊情况,我们在向量束的模空间上构造了一个具有固定的,不一定平凡的行列式的Hitchin连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parabolic Hitchin connection
In this paper, we present an algebro-geometric construction of the Hitchin connection in the parabolic setting for a fixed determinant line bundle. Our strategy is based on Hecke modifications, where we provide a decomposition formula for the parabolic determinant line bundle and the canonical line bundle of the moduli space of parabolic bundles. As a special case, we construct a Hitchin connection on the moduli space of vector bundles with fixed, not necessarily trivial, determinant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信