Yiyu Liu, Zilong Mu, Peichao Hong, Yun Yang and Changxu Lin
{"title":"基于可解释机器学习的热电材料特征挖掘","authors":"Yiyu Liu, Zilong Mu, Peichao Hong, Yun Yang and Changxu Lin","doi":"10.1039/D4NR03271C","DOIUrl":null,"url":null,"abstract":"<p >In previous laboratory preparation processes, the selection and proportioning of specific experimental parameters often stemmed from the empirical experience of predecessors, necessitating the derivation of the optimal scheme for the target experiment through extensive trial and error. This process typically required the consumption of substantial resources and time. Thanks to the advancement of machine learning technologies, these have gradually become a powerful tool for addressing complex functional problems in material optimization. This study is based on a collected database of thermoelectric materials, aiming to clarify the correspondence between physical characteristics and the thermoelectric figure of merit, <em>zT</em>. The key features that can directly affect the experimental results are identified, and the features that indirectly affect the experimental results are also analyzed. By employing interpretable machine learning methods, this research analyzes critical molecular features in the characterized data, utilizing feature engineering techniques to construct and optimize machine learning models for the selected key features. Furthermore, in the subsequent model fitting and analysis phase, by comparing the efficiency of different feature combinations, the optimal feature descriptors for the current experimental system were determined. The adoption of the aforementioned improved methods endowed the related models with the potential for high-throughput screening, thereby further enhancing the efficiency of experimental optimization.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 4","pages":" 2200-2214"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature mining for thermoelectric materials based on interpretable machine learning†\",\"authors\":\"Yiyu Liu, Zilong Mu, Peichao Hong, Yun Yang and Changxu Lin\",\"doi\":\"10.1039/D4NR03271C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In previous laboratory preparation processes, the selection and proportioning of specific experimental parameters often stemmed from the empirical experience of predecessors, necessitating the derivation of the optimal scheme for the target experiment through extensive trial and error. This process typically required the consumption of substantial resources and time. Thanks to the advancement of machine learning technologies, these have gradually become a powerful tool for addressing complex functional problems in material optimization. This study is based on a collected database of thermoelectric materials, aiming to clarify the correspondence between physical characteristics and the thermoelectric figure of merit, <em>zT</em>. The key features that can directly affect the experimental results are identified, and the features that indirectly affect the experimental results are also analyzed. By employing interpretable machine learning methods, this research analyzes critical molecular features in the characterized data, utilizing feature engineering techniques to construct and optimize machine learning models for the selected key features. Furthermore, in the subsequent model fitting and analysis phase, by comparing the efficiency of different feature combinations, the optimal feature descriptors for the current experimental system were determined. The adoption of the aforementioned improved methods endowed the related models with the potential for high-throughput screening, thereby further enhancing the efficiency of experimental optimization.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 4\",\"pages\":\" 2200-2214\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03271c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03271c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Feature mining for thermoelectric materials based on interpretable machine learning†
In previous laboratory preparation processes, the selection and proportioning of specific experimental parameters often stemmed from the empirical experience of predecessors, necessitating the derivation of the optimal scheme for the target experiment through extensive trial and error. This process typically required the consumption of substantial resources and time. Thanks to the advancement of machine learning technologies, these have gradually become a powerful tool for addressing complex functional problems in material optimization. This study is based on a collected database of thermoelectric materials, aiming to clarify the correspondence between physical characteristics and the thermoelectric figure of merit, zT. The key features that can directly affect the experimental results are identified, and the features that indirectly affect the experimental results are also analyzed. By employing interpretable machine learning methods, this research analyzes critical molecular features in the characterized data, utilizing feature engineering techniques to construct and optimize machine learning models for the selected key features. Furthermore, in the subsequent model fitting and analysis phase, by comparing the efficiency of different feature combinations, the optimal feature descriptors for the current experimental system were determined. The adoption of the aforementioned improved methods endowed the related models with the potential for high-throughput screening, thereby further enhancing the efficiency of experimental optimization.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.