{"title":"单细胞基因组学在细胞周期检测方面开辟了新天地","authors":"Qian Du","doi":"10.1038/s41588-024-01987-1","DOIUrl":null,"url":null,"abstract":"A novel method for analyzing single-cell genomics enables direct inference of cell cycle and proliferation status, highlighting the diversity of proliferation rates in clonal cancer. This approach opens a new avenue for high-resolution exploration of the role of proliferation in cancer evolution at the single-cell level.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 1","pages":"3-5"},"PeriodicalIF":31.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell genomics breaks new ground in cell cycle detection\",\"authors\":\"Qian Du\",\"doi\":\"10.1038/s41588-024-01987-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method for analyzing single-cell genomics enables direct inference of cell cycle and proliferation status, highlighting the diversity of proliferation rates in clonal cancer. This approach opens a new avenue for high-resolution exploration of the role of proliferation in cancer evolution at the single-cell level.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"57 1\",\"pages\":\"3-5\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01987-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01987-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Single-cell genomics breaks new ground in cell cycle detection
A novel method for analyzing single-cell genomics enables direct inference of cell cycle and proliferation status, highlighting the diversity of proliferation rates in clonal cancer. This approach opens a new avenue for high-resolution exploration of the role of proliferation in cancer evolution at the single-cell level.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution