蜱虫黏合剂中富含甘氨酸蛋白的相分离与老化

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ketan A. Ganar, Manali Nandy, Polina Turbina, Chang Chen, Dennis Suylen, Elisa Nihoul, Emily Louise Pascoe, Stan van der Beelen, Maarten Plaum, Leendert van den Bos, Constantianus J. M. Koenraadt, Ingrid Dijkgraaf, Siddharth Deshpande
{"title":"蜱虫黏合剂中富含甘氨酸蛋白的相分离与老化","authors":"Ketan A. Ganar, Manali Nandy, Polina Turbina, Chang Chen, Dennis Suylen, Elisa Nihoul, Emily Louise Pascoe, Stan van der Beelen, Maarten Plaum, Leendert van den Bos, Constantianus J. M. Koenraadt, Ingrid Dijkgraaf, Siddharth Deshpande","doi":"10.1038/s41557-024-01686-8","DOIUrl":null,"url":null,"abstract":"<p>Hard ticks feed on their host for multiple days. To ensure firm attachment, they secrete a protein-rich saliva that eventually forms a solid cement cone. The underlying mechanism of this liquid-to-solid transition is currently not understood. This study focuses on the phase transitions of a disordered glycine-rich protein (GRP) found in tick saliva. We show that GRP undergoes liquid–liquid phase separation via simple coacervation to form biomolecular condensates in salty environments. Cation–<i>π</i> and <i>π</i>–<i>π</i> interactions mediated by periodically placed arginine and aromatic amino-acid residues are the primary driving forces that promote phase separation. Interestingly, GRP condensates exhibit ageing by undergoing liquid-to-gel transition over time and exhibit adhesive properties, similar to the naturally occurring cement cone. Finally, we provide evidence for protein-rich condensates in natural tick saliva. Our findings provide a starting point to gain further insights into the bioadhesion of ticks, to develop novel tick control strategies, and towards achieving biomedical applications such as tissue sealants.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"9 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase separation and ageing of glycine-rich protein from tick adhesive\",\"authors\":\"Ketan A. Ganar, Manali Nandy, Polina Turbina, Chang Chen, Dennis Suylen, Elisa Nihoul, Emily Louise Pascoe, Stan van der Beelen, Maarten Plaum, Leendert van den Bos, Constantianus J. M. Koenraadt, Ingrid Dijkgraaf, Siddharth Deshpande\",\"doi\":\"10.1038/s41557-024-01686-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hard ticks feed on their host for multiple days. To ensure firm attachment, they secrete a protein-rich saliva that eventually forms a solid cement cone. The underlying mechanism of this liquid-to-solid transition is currently not understood. This study focuses on the phase transitions of a disordered glycine-rich protein (GRP) found in tick saliva. We show that GRP undergoes liquid–liquid phase separation via simple coacervation to form biomolecular condensates in salty environments. Cation–<i>π</i> and <i>π</i>–<i>π</i> interactions mediated by periodically placed arginine and aromatic amino-acid residues are the primary driving forces that promote phase separation. Interestingly, GRP condensates exhibit ageing by undergoing liquid-to-gel transition over time and exhibit adhesive properties, similar to the naturally occurring cement cone. Finally, we provide evidence for protein-rich condensates in natural tick saliva. Our findings provide a starting point to gain further insights into the bioadhesion of ticks, to develop novel tick control strategies, and towards achieving biomedical applications such as tissue sealants.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-024-01686-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01686-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硬蜱以宿主为食好几天。为了确保牢固的附着,它们分泌一种富含蛋白质的唾液,最终形成一个坚固的水泥锥体。这种从液体到固体转变的潜在机制目前还不清楚。本研究的重点是在蜱虫唾液中发现的一种富含甘氨酸的蛋白(GRP)的相变。研究表明,GRP在含盐环境中通过简单的凝聚作用进行液液相分离,形成生物分子凝聚物。周期性放置的精氨酸和芳香氨基酸残基介导的阳离子-π和π -π相互作用是促进相分离的主要驱动力。有趣的是,GRP凝析物随着时间的推移会经历液体到凝胶的转变,并表现出与天然水泥锥相似的粘合性能,从而表现出老化。最后,我们提供了天然蜱唾液中富含蛋白质凝聚物的证据。我们的研究结果为进一步了解蜱虫的生物粘附性、开发新的蜱虫控制策略以及实现生物医学应用(如组织密封剂)提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase separation and ageing of glycine-rich protein from tick adhesive

Phase separation and ageing of glycine-rich protein from tick adhesive

Hard ticks feed on their host for multiple days. To ensure firm attachment, they secrete a protein-rich saliva that eventually forms a solid cement cone. The underlying mechanism of this liquid-to-solid transition is currently not understood. This study focuses on the phase transitions of a disordered glycine-rich protein (GRP) found in tick saliva. We show that GRP undergoes liquid–liquid phase separation via simple coacervation to form biomolecular condensates in salty environments. Cation–π and ππ interactions mediated by periodically placed arginine and aromatic amino-acid residues are the primary driving forces that promote phase separation. Interestingly, GRP condensates exhibit ageing by undergoing liquid-to-gel transition over time and exhibit adhesive properties, similar to the naturally occurring cement cone. Finally, we provide evidence for protein-rich condensates in natural tick saliva. Our findings provide a starting point to gain further insights into the bioadhesion of ticks, to develop novel tick control strategies, and towards achieving biomedical applications such as tissue sealants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信