一种有条理的战略,以实现有效的电-太阳能减少,结合适当的原位技术

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-11-29 DOI:10.1016/j.chempr.2024.10.025
Amol Uttam Pawar, Ramesh Poonchi Sivasankaran, Long Yang, Don Keun Lee, Young Soo Kang
{"title":"一种有条理的战略,以实现有效的电-太阳能减少,结合适当的原位技术","authors":"Amol Uttam Pawar, Ramesh Poonchi Sivasankaran, Long Yang, Don Keun Lee, Young Soo Kang","doi":"10.1016/j.chempr.2024.10.025","DOIUrl":null,"url":null,"abstract":"Solar-to-fuel production via the carbon dioxide (CO<sub>2</sub>) reduction reaction (CO2RR) is a crucial and widely discussed topic, particularly in the context of climate change. Electro-solar approaches, such as electrochemical (EC), photochemical (PC), and photoelectrochemical (PEC) methods, are promising for CO2RR due to their efficiency and mild operating conditions. The process of converting CO<sub>2</sub> into valuable products involves multiple steps and requires a deep understanding of reaction mechanisms and product selectivity. <em>In situ</em> and <em>operando</em> spectroscopic techniques are essential for elucidating these mechanisms. This review focuses on advanced <em>in situ</em> spectroscopic methods, such as X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy, Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy, which provide insights into CO<sub>2</sub> adsorption, activation, and electron-proton transfer, leading to intermediate radical formation. Additionally, advanced X-ray techniques are briefly discussed, offering refined approaches to studying CO2RR dynamics. These integrated techniques are crucial for designing and optimizing catalysts for efficient CO<sub>2</sub> reduction and conversion.","PeriodicalId":268,"journal":{"name":"Chem","volume":"259 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A methodical strategy for achieving efficient electro-solar reduction, incorporating appropriate in situ techniques\",\"authors\":\"Amol Uttam Pawar, Ramesh Poonchi Sivasankaran, Long Yang, Don Keun Lee, Young Soo Kang\",\"doi\":\"10.1016/j.chempr.2024.10.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-to-fuel production via the carbon dioxide (CO<sub>2</sub>) reduction reaction (CO2RR) is a crucial and widely discussed topic, particularly in the context of climate change. Electro-solar approaches, such as electrochemical (EC), photochemical (PC), and photoelectrochemical (PEC) methods, are promising for CO2RR due to their efficiency and mild operating conditions. The process of converting CO<sub>2</sub> into valuable products involves multiple steps and requires a deep understanding of reaction mechanisms and product selectivity. <em>In situ</em> and <em>operando</em> spectroscopic techniques are essential for elucidating these mechanisms. This review focuses on advanced <em>in situ</em> spectroscopic methods, such as X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy, Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy, which provide insights into CO<sub>2</sub> adsorption, activation, and electron-proton transfer, leading to intermediate radical formation. Additionally, advanced X-ray techniques are briefly discussed, offering refined approaches to studying CO2RR dynamics. These integrated techniques are crucial for designing and optimizing catalysts for efficient CO<sub>2</sub> reduction and conversion.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"259 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.10.025\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.025","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过二氧化碳(CO2)还原反应(CO2RR)生产太阳能燃料是一个至关重要且被广泛讨论的话题,特别是在气候变化的背景下。电化学(EC)、光化学(PC)和光电化学(PEC)等电-太阳能方法因其效率高和操作条件温和而被看好。将二氧化碳转化为有价值产品的过程涉及多个步骤,需要对反应机理和产品选择性有深入的了解。原位和操作光谱技术对于阐明这些机制是必不可少的。本文综述了先进的原位光谱方法,如x射线吸收光谱(XAS)、红外光谱(IR)、拉曼光谱(Raman)和电子顺磁共振(EPR)光谱,这些方法可以深入了解二氧化碳的吸附、活化和电子-质子转移,从而导致中间自由基的形成。此外,还简要讨论了先进的x射线技术,为研究CO2RR动力学提供了改进的方法。这些综合技术对于设计和优化有效的二氧化碳还原和转化催化剂至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A methodical strategy for achieving efficient electro-solar reduction, incorporating appropriate in situ techniques

A methodical strategy for achieving efficient electro-solar reduction, incorporating appropriate in situ techniques
Solar-to-fuel production via the carbon dioxide (CO2) reduction reaction (CO2RR) is a crucial and widely discussed topic, particularly in the context of climate change. Electro-solar approaches, such as electrochemical (EC), photochemical (PC), and photoelectrochemical (PEC) methods, are promising for CO2RR due to their efficiency and mild operating conditions. The process of converting CO2 into valuable products involves multiple steps and requires a deep understanding of reaction mechanisms and product selectivity. In situ and operando spectroscopic techniques are essential for elucidating these mechanisms. This review focuses on advanced in situ spectroscopic methods, such as X-ray absorption spectroscopy (XAS), infrared (IR) spectroscopy, Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy, which provide insights into CO2 adsorption, activation, and electron-proton transfer, leading to intermediate radical formation. Additionally, advanced X-ray techniques are briefly discussed, offering refined approaches to studying CO2RR dynamics. These integrated techniques are crucial for designing and optimizing catalysts for efficient CO2 reduction and conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信