Jiang Wang, Song Gao, Hefang Hong, Wei Xue, Jiwei Yuan, Xiao-Yan Wang, Mark van Kleunen, Junmin Li
{"title":"食草动物和等位基因共同促成了多样性与侵染性之间的关系。","authors":"Jiang Wang, Song Gao, Hefang Hong, Wei Xue, Jiwei Yuan, Xiao-Yan Wang, Mark van Kleunen, Junmin Li","doi":"10.1002/ecy.4490","DOIUrl":null,"url":null,"abstract":"<p>Although herbivory and allelopathy play important roles in plant invasions, their roles in mediating the effect of plant diversity on invasion resistance remain unknown. In a 2-year field experiment, we constructed native plant communities with four levels of species richness (one, two, four, and eight species) and used a factorial combination of insecticide and activated carbon applications to reduce herbivory and allelopathy, respectively. We then invaded the communities with the introduced plant <i>Solidago canadensis</i> L. One year after the start of the experiment, there was no statistically significant net effect of species richness on biomass of the invader. However, a structural equation model showed that species richness had a positive direct effect on invader biomass that was partially balanced out by a negative indirect effect of species richness via increased light interception. In the second year, the relationship between invader biomass and species richness was negative when we analyzed the treatment combination with herbivory and allelopathy separately. Therefore, we conclude that joint effects of herbivory and allelopathy may play major roles in driving the diversity–invasibility relationship and should be considered in future studies.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herbivory and allelopathy contribute jointly to the diversity–invasibility relationship\",\"authors\":\"Jiang Wang, Song Gao, Hefang Hong, Wei Xue, Jiwei Yuan, Xiao-Yan Wang, Mark van Kleunen, Junmin Li\",\"doi\":\"10.1002/ecy.4490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although herbivory and allelopathy play important roles in plant invasions, their roles in mediating the effect of plant diversity on invasion resistance remain unknown. In a 2-year field experiment, we constructed native plant communities with four levels of species richness (one, two, four, and eight species) and used a factorial combination of insecticide and activated carbon applications to reduce herbivory and allelopathy, respectively. We then invaded the communities with the introduced plant <i>Solidago canadensis</i> L. One year after the start of the experiment, there was no statistically significant net effect of species richness on biomass of the invader. However, a structural equation model showed that species richness had a positive direct effect on invader biomass that was partially balanced out by a negative indirect effect of species richness via increased light interception. In the second year, the relationship between invader biomass and species richness was negative when we analyzed the treatment combination with herbivory and allelopathy separately. Therefore, we conclude that joint effects of herbivory and allelopathy may play major roles in driving the diversity–invasibility relationship and should be considered in future studies.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4490\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4490","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Herbivory and allelopathy contribute jointly to the diversity–invasibility relationship
Although herbivory and allelopathy play important roles in plant invasions, their roles in mediating the effect of plant diversity on invasion resistance remain unknown. In a 2-year field experiment, we constructed native plant communities with four levels of species richness (one, two, four, and eight species) and used a factorial combination of insecticide and activated carbon applications to reduce herbivory and allelopathy, respectively. We then invaded the communities with the introduced plant Solidago canadensis L. One year after the start of the experiment, there was no statistically significant net effect of species richness on biomass of the invader. However, a structural equation model showed that species richness had a positive direct effect on invader biomass that was partially balanced out by a negative indirect effect of species richness via increased light interception. In the second year, the relationship between invader biomass and species richness was negative when we analyzed the treatment combination with herbivory and allelopathy separately. Therefore, we conclude that joint effects of herbivory and allelopathy may play major roles in driving the diversity–invasibility relationship and should be considered in future studies.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.