高斯过程数据的领域选择:心电图信号的应用

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Nicolás Hernández, Gabriel Martos
{"title":"高斯过程数据的领域选择:心电图信号的应用","authors":"Nicolás Hernández,&nbsp;Gabriel Martos","doi":"10.1002/bimj.70018","DOIUrl":null,"url":null,"abstract":"<p>Gaussian processes and the Kullback–Leibler divergence have been deeply studied in statistics and machine learning. This paper marries these two concepts and introduce the local Kullback–Leibler divergence to learn about intervals where two Gaussian processes differ the most. We address subtleties entailed in the estimation of local divergences and the corresponding interval of local maximum divergence as well. The estimation performance and the numerical efficiency of the proposed method are showcased via a Monte Carlo simulation study. In a medical research context, we assess the potential of the devised tools in the analysis of electrocardiogram signals.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70018","citationCount":"0","resultStr":"{\"title\":\"Domain Selection for Gaussian Process Data: An Application to Electrocardiogram Signals\",\"authors\":\"Nicolás Hernández,&nbsp;Gabriel Martos\",\"doi\":\"10.1002/bimj.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gaussian processes and the Kullback–Leibler divergence have been deeply studied in statistics and machine learning. This paper marries these two concepts and introduce the local Kullback–Leibler divergence to learn about intervals where two Gaussian processes differ the most. We address subtleties entailed in the estimation of local divergences and the corresponding interval of local maximum divergence as well. The estimation performance and the numerical efficiency of the proposed method are showcased via a Monte Carlo simulation study. In a medical research context, we assess the potential of the devised tools in the analysis of electrocardiogram signals.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70018\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

统计学和机器学习领域对高斯过程和库尔贝克-莱布勒发散进行了深入研究。本文将这两个概念结合起来,引入了局部库尔贝克-莱布勒发散,以了解两个高斯过程差异最大的区间。我们还讨论了估计局部发散和相应的局部最大发散区间所涉及的微妙问题。我们通过蒙特卡罗模拟研究展示了所提方法的估计性能和数值效率。在医学研究方面,我们评估了所设计的工具在分析心电图信号方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Domain Selection for Gaussian Process Data: An Application to Electrocardiogram Signals

Domain Selection for Gaussian Process Data: An Application to Electrocardiogram Signals

Gaussian processes and the Kullback–Leibler divergence have been deeply studied in statistics and machine learning. This paper marries these two concepts and introduce the local Kullback–Leibler divergence to learn about intervals where two Gaussian processes differ the most. We address subtleties entailed in the estimation of local divergences and the corresponding interval of local maximum divergence as well. The estimation performance and the numerical efficiency of the proposed method are showcased via a Monte Carlo simulation study. In a medical research context, we assess the potential of the devised tools in the analysis of electrocardiogram signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信