几何工程类器官单元及其组装,用于器官结构的预构建。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2024-11-26 eCollection Date: 2024-12-01 DOI:10.1063/5.0222866
Ayaka Kadotani, Gen Hayase, Daisuke Yoshino
{"title":"几何工程类器官单元及其组装,用于器官结构的预构建。","authors":"Ayaka Kadotani, Gen Hayase, Daisuke Yoshino","doi":"10.1063/5.0222866","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine is moving from the nascent to the transitional stage as researchers are actively engaged in creating mini-organs from pluripotent stem cells to construct artificial models of physiological and pathological conditions. Currently, mini-organs can express higher-order functions, but their size is limited to the order of a few millimeters. Therefore, one of the ultimate goals of regenerative medicine, \"organ replication and transplantation with organoid,\" remains a major obstacle. Three-dimensional (3D) bioprinting technology is expected to be an innovative breakthrough in this field, but various issues have been raised, such as cell damage, versatility of bioink, and printing time. In this study, we established a method for fabricating, connecting, and assembling organoid units of various shapes independent of cell type, extracellular matrix, and adhesive composition (unit construction method). We also fabricated kidney tissue-like structures using three types of parenchymal and interstitial cells that compose the human kidney and obtained findings suggesting the possibility of crosstalk between the units. This study mainly focuses on methods for reproducing the structure of organs, and there are still issues to be addressed in terms of the expression of their higher-order functions. We anticipate that engineering innovation based on this technique will bring us closer to the realization of highly efficient and rapid fabrication of full-scale organoids that can withstand organ transplantation.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 4","pages":"046112"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602216/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometrically engineered organoid units and their assembly for pre-construction of organ structures.\",\"authors\":\"Ayaka Kadotani, Gen Hayase, Daisuke Yoshino\",\"doi\":\"10.1063/5.0222866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regenerative medicine is moving from the nascent to the transitional stage as researchers are actively engaged in creating mini-organs from pluripotent stem cells to construct artificial models of physiological and pathological conditions. Currently, mini-organs can express higher-order functions, but their size is limited to the order of a few millimeters. Therefore, one of the ultimate goals of regenerative medicine, \\\"organ replication and transplantation with organoid,\\\" remains a major obstacle. Three-dimensional (3D) bioprinting technology is expected to be an innovative breakthrough in this field, but various issues have been raised, such as cell damage, versatility of bioink, and printing time. In this study, we established a method for fabricating, connecting, and assembling organoid units of various shapes independent of cell type, extracellular matrix, and adhesive composition (unit construction method). We also fabricated kidney tissue-like structures using three types of parenchymal and interstitial cells that compose the human kidney and obtained findings suggesting the possibility of crosstalk between the units. This study mainly focuses on methods for reproducing the structure of organs, and there are still issues to be addressed in terms of the expression of their higher-order functions. We anticipate that engineering innovation based on this technique will bring us closer to the realization of highly efficient and rapid fabrication of full-scale organoids that can withstand organ transplantation.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"8 4\",\"pages\":\"046112\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222866\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222866","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

再生医学正从新生阶段进入过渡阶段,研究人员正积极利用多能干细胞制造微型器官,以构建生理和病理状态的人工模型。目前,微型器官可以表达高阶功能,但其大小仅限于几毫米。因此,再生医学的终极目标之一 "类器官复制和移植 "仍然是一大障碍。三维(3D)生物打印技术有望成为这一领域的创新性突破,但也提出了各种问题,如细胞损伤、生物墨水的多功能性和打印时间等。在本研究中,我们建立了一种独立于细胞类型、细胞外基质和粘合剂成分的方法(单元构建法),用于制造、连接和组装各种形状的类器官单元。我们还利用组成人体肾脏的三种实质细胞和间质细胞制作了类似肾脏组织的结构,研究结果表明这些单元之间可能存在串联。这项研究主要侧重于器官结构的再现方法,在器官高阶功能的表达方面仍有问题有待解决。我们预计,基于该技术的工程创新将使我们更接近于实现高效、快速地制造可承受器官移植的全尺寸器官组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically engineered organoid units and their assembly for pre-construction of organ structures.

Regenerative medicine is moving from the nascent to the transitional stage as researchers are actively engaged in creating mini-organs from pluripotent stem cells to construct artificial models of physiological and pathological conditions. Currently, mini-organs can express higher-order functions, but their size is limited to the order of a few millimeters. Therefore, one of the ultimate goals of regenerative medicine, "organ replication and transplantation with organoid," remains a major obstacle. Three-dimensional (3D) bioprinting technology is expected to be an innovative breakthrough in this field, but various issues have been raised, such as cell damage, versatility of bioink, and printing time. In this study, we established a method for fabricating, connecting, and assembling organoid units of various shapes independent of cell type, extracellular matrix, and adhesive composition (unit construction method). We also fabricated kidney tissue-like structures using three types of parenchymal and interstitial cells that compose the human kidney and obtained findings suggesting the possibility of crosstalk between the units. This study mainly focuses on methods for reproducing the structure of organs, and there are still issues to be addressed in terms of the expression of their higher-order functions. We anticipate that engineering innovation based on this technique will bring us closer to the realization of highly efficient and rapid fabrication of full-scale organoids that can withstand organ transplantation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信