[虾青素对α-amanitin诱导的小鼠急性肝损伤的保护作用]。

Q3 Medicine
Y P Luo, J J Zhong, Q M Yao, Z X Geng, C G Chen, C M Yu
{"title":"[虾青素对α-amanitin诱导的小鼠急性肝损伤的保护作用]。","authors":"Y P Luo, J J Zhong, Q M Yao, Z X Geng, C G Chen, C M Yu","doi":"10.3760/cma.j.cn121094-20231127-00133","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice. <b>Methods:</b> In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett-<i>t</i> test. <b>Results:</b> The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant (<i>P</i><0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant (<i>P</i><0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant (<i>P</i><0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant (<i>P</i><0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant (<i>P</i><0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances (<i>P</i><0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased (<i>P</i><0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased (<i>P</i><0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased (<i>P</i><0.05) . <b>Conclusion:</b> Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.</p>","PeriodicalId":23958,"journal":{"name":"中华劳动卫生职业病杂志","volume":"42 11","pages":"801-806"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice].\",\"authors\":\"Y P Luo, J J Zhong, Q M Yao, Z X Geng, C G Chen, C M Yu\",\"doi\":\"10.3760/cma.j.cn121094-20231127-00133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice. <b>Methods:</b> In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett-<i>t</i> test. <b>Results:</b> The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant (<i>P</i><0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant (<i>P</i><0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant (<i>P</i><0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant (<i>P</i><0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant (<i>P</i><0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances (<i>P</i><0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased (<i>P</i><0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased (<i>P</i><0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased (<i>P</i><0.05) . <b>Conclusion:</b> Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.</p>\",\"PeriodicalId\":23958,\"journal\":{\"name\":\"中华劳动卫生职业病杂志\",\"volume\":\"42 11\",\"pages\":\"801-806\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华劳动卫生职业病杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121094-20231127-00133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华劳动卫生职业病杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121094-20231127-00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的探讨虾青素对α-amanitin诱导的小鼠急性肝损伤的保护作用。方法2023年6月,选择42只健康的SPF雄性昆明小鼠。按随机数字表法分为空白对照组、模型(0.45 mg/kgα-amanitin)组、橄榄油(10 ml/kg橄榄油)组、低剂量(20 mg/kg)虾青素组、中剂量(40 mg/kg)虾青素组、高剂量(80 mg/kg)虾青素组和水飞蓟素(20 mg/kg)组。每组 6 只小鼠。空白对照组小鼠腹腔注射10毫升/千克生理盐水,另一组小鼠腹腔注射α-芒硝。然后,空白对照组和模型组小鼠腹腔注射 10 ml/kg 生理盐水,橄榄油组和虾青素组小鼠按剂量灌胃橄榄油和虾青素,水飞蓟宾组小鼠按剂量注射水飞蓟宾。每 12 小时给药一次,共给药 4 次。60 h后处死小鼠,称量肝脏重量,计算肝脏指数。检测小鼠血清中天冬氨酸氨基转移酶(AST)和丙氨酸氨基转移酶(ALT)的含量,以及肝组织中超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)、过氧化氢酶(CAT)和丙二醛(MDA)的含量。采用单因素方差分析(ANOVA)比较各组指标差异,配对比较采用Dunnett-t检验。结果空白对照组小鼠毛色光滑、精神良好、行为正常,其他各组小鼠均有不同程度的发育迟缓和饮食减少,各组均无死亡。模型组体重[(26.67±1.51)g]和肝脏质量[(1.23±0.14)g]明显低于空白对照组[(33.50±2.43)g和(1.87±0.16)g],差异有统计学意义(PPPPPPPPP结论:虾青素可缓解小鼠急性肝衰竭:虾青素可通过减轻小鼠肝脏的氧化应激减轻α-amanitin诱导的急性肝损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice].

Objective: To explore the protective effect of astaxanthin on acute liver injury induced by α-amanitin in mice. Methods: In June 2023, 42 healthy SPF male Kunming mice were selected. The mice were divided into blank control group, model (0.45 mg/kg α-amanitin) group, olive oil (10 ml/kg olive oil) group, low dose (20 mg/kg) astaxanthin group, medium dose (40 mg/kg) astaxanthin group, high dose (80 mg/kg) astaxanthin group and silybin (20 mg/kg) group by random number table method. Each group had 6 animals. Mice in the blank control group were intraperitoneally injected with 10 ml/kg normal saline, and mice in the other group were injected with α-amanitin. After that, the blank control group and model group were infused with 10 ml/kg normal saline, olive oil group and astaxanthin groups were given olive oil and astaxanthin according to dose by gavage, and silybin group was injected with silybin by dose. The drug was administered once every 12 h for a total of 4 doses. After 60 h, the mice were killed, the liver weight was weighed, and the liver index was calculated. The contents of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of mice were detected, and the contents of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA) in liver tissues were also detected. One-way analysis of variance (ANOVA) was used to compare the difference of indexes among each group, and pairwise comparison was performed by Dunnett-t test. Results: The mice in the blank control group had smooth hair color, good spirit and normal behavior, while the mice in the other groups showed varying degrees of retardation and decreased diet, and no death occurred in each group. Body mass[ (26.67±1.51) g] and liver mass[ (1.23±0.14) g] in model group were significantly lower than those in blank control group [ (33.50±2.43) g and (1.87±0.16) g], and the differences were statistically significant (P<0.05). The liver index [ (5.39±0.32) %, (5.83±0.30) %, (5.75±0.24) % and (5.78±0.16) %] in low, medium and high dose astaxanthin groups and silybin group were significantly higher than those in model group [ (4.61±0.12) %], and the differences were statistically significant (P<0.05). Serum ALT and AST contents in model group [ (153.04±13.96) U/L and (59.08±4.03) U/L] were significantly higher than those in blank control group [ (13.77±1.29) U/L and (10.21±0.35) U/L], and the differences were statistically significant (P<0.05). The contents of CAT, GSH and SOD in liver tissues of model group [ (9.40±2.23) U/mgprot, (3.09±0.26) μmol/gprot and (48.94±3.13) U/mgprot] were significantly lower than those of blank control group [ (26.36±2.92) U/mgprot, (6.76±0.71) μmol/gprot and (89.89±4.17) U/mgprot], the differences were statistically significant (P<0.05). MDA content[ (6.33±0.24) nmol/mgprot] in liver tissue of model group was significantly higher than that of blank control group [ (0.91±0.21) nmol/mgprot], and the difference was statistically significant (P<0.05). The CAT contents[ (18.64±1.76) U/mgprot, (18.20±1.76) U/mgprot, and (15.54±1.36) U/mgprot] in liver tissues of low, medium and high dose astaxanthin groups were significantly higher than those of model group, with statistical significances (P<0.05). Compared with model group, SOD contents[ (72.16±7.44) U/mgprot, (93.18±5.28) U/mgprot, (103.78±7.07) U/mgprot, and (96.60±7.02) U/mgprot] in liver tissues of mice in low, medium and high dose astaxanthin groups and silybin group were significantly increased (P<0.05), MDA contents [ (4.30±0.84) U/mgprot, (3.66±0.28) U/mgprot, (2.96±0.29) U/mgprot, and (2.88±0.39) U/mgprot] were significantly decreased (P<0.05). Compared with model group, GSH content [ (7.90±1.25) μmol/gprot] in high dose astaxanthin group was significantly increased (P<0.05) . Conclusion: Astaxanthin may alleviate acute liver injury induced by α-amanitin by alleviating oxidative stress in mice liver.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中华劳动卫生职业病杂志
中华劳动卫生职业病杂志 Medicine-Medicine (all)
CiteScore
1.00
自引率
0.00%
发文量
9764
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信