Fang Tong, Shuai Liu, Chen Zhang, Xicheng Gu, Huan Yang, Bin Zhou, Yun-Yun Wang, Jianwei Chen, Qianhui Qu, Ye Gong, Haili Pan, Chen Liang, Changlin Li, Xin Zhang, Qingjian Han
{"title":"表达转运体 TMEM163 的背根神经节神经元中的囊泡 Zn2+ 升高会导致小鼠出现年龄相关性皮肤瘙痒。","authors":"Fang Tong, Shuai Liu, Chen Zhang, Xicheng Gu, Huan Yang, Bin Zhou, Yun-Yun Wang, Jianwei Chen, Qianhui Qu, Ye Gong, Haili Pan, Chen Liang, Changlin Li, Xin Zhang, Qingjian Han","doi":"10.1371/journal.pbio.3002888","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalent itching condition associated with aging, historically referred to as senile pruritus, diminishes quality of life. Despite its impact, effective treatments remain elusive, largely due to an incomplete understanding of its pathological cause. In this study, we reveal a subset of dorsal root ganglion neurons enriched with Zn2+ that express the vesicular Zn2+ transporter TMEM163. These neurons form direct synapses with and modulate the activity of spinal NPY+ inhibitory interneurons. In aged mice, both the expression of TMEM163 and the concentration of vesicular Zn2+ within the central terminals of TMEM163+ primary afferents show marked elevation. Importantly, the excessive release of vesicular Zn2+ significantly dampens the activity of NPY+ neurons, triggering the disinhibition of itch-transmitting neural circuits and resulting in chronic itch. Intriguingly, chelating Zn2+ within the spinal dorsal horn effectively relieves itch in aged mice. Our study thus unveils a novel molecular mechanism underlying senile pruritus.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002888"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elevated vesicular Zn2+ in dorsal root ganglion neurons expressing the transporter TMEM163 causes age-associated itchy skin in mice.\",\"authors\":\"Fang Tong, Shuai Liu, Chen Zhang, Xicheng Gu, Huan Yang, Bin Zhou, Yun-Yun Wang, Jianwei Chen, Qianhui Qu, Ye Gong, Haili Pan, Chen Liang, Changlin Li, Xin Zhang, Qingjian Han\",\"doi\":\"10.1371/journal.pbio.3002888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalent itching condition associated with aging, historically referred to as senile pruritus, diminishes quality of life. Despite its impact, effective treatments remain elusive, largely due to an incomplete understanding of its pathological cause. In this study, we reveal a subset of dorsal root ganglion neurons enriched with Zn2+ that express the vesicular Zn2+ transporter TMEM163. These neurons form direct synapses with and modulate the activity of spinal NPY+ inhibitory interneurons. In aged mice, both the expression of TMEM163 and the concentration of vesicular Zn2+ within the central terminals of TMEM163+ primary afferents show marked elevation. Importantly, the excessive release of vesicular Zn2+ significantly dampens the activity of NPY+ neurons, triggering the disinhibition of itch-transmitting neural circuits and resulting in chronic itch. Intriguingly, chelating Zn2+ within the spinal dorsal horn effectively relieves itch in aged mice. Our study thus unveils a novel molecular mechanism underlying senile pruritus.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002888\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002888\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002888","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Elevated vesicular Zn2+ in dorsal root ganglion neurons expressing the transporter TMEM163 causes age-associated itchy skin in mice.
The prevalent itching condition associated with aging, historically referred to as senile pruritus, diminishes quality of life. Despite its impact, effective treatments remain elusive, largely due to an incomplete understanding of its pathological cause. In this study, we reveal a subset of dorsal root ganglion neurons enriched with Zn2+ that express the vesicular Zn2+ transporter TMEM163. These neurons form direct synapses with and modulate the activity of spinal NPY+ inhibitory interneurons. In aged mice, both the expression of TMEM163 and the concentration of vesicular Zn2+ within the central terminals of TMEM163+ primary afferents show marked elevation. Importantly, the excessive release of vesicular Zn2+ significantly dampens the activity of NPY+ neurons, triggering the disinhibition of itch-transmitting neural circuits and resulting in chronic itch. Intriguingly, chelating Zn2+ within the spinal dorsal horn effectively relieves itch in aged mice. Our study thus unveils a novel molecular mechanism underlying senile pruritus.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.