{"title":"工程免疫:癌症新抗原疫苗的细菌递送。","authors":"Christopher D Johnston, Jennifer A Wargo","doi":"10.1016/j.it.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>In the battle against cancer, researchers are exploring the use of engineered bacteria as living medicines. Redenti and colleagues demonstrate that Escherichia coli Nissle 1917 (EcN) can be engineered to deliver cancer neoantigen payloads, stimulating antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells and mediating antitumor immunity in preclinical models of colorectal cancer and melanoma.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering immunity: bacterial delivery of cancer neoantigen vaccines.\",\"authors\":\"Christopher D Johnston, Jennifer A Wargo\",\"doi\":\"10.1016/j.it.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the battle against cancer, researchers are exploring the use of engineered bacteria as living medicines. Redenti and colleagues demonstrate that Escherichia coli Nissle 1917 (EcN) can be engineered to deliver cancer neoantigen payloads, stimulating antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells and mediating antitumor immunity in preclinical models of colorectal cancer and melanoma.</p>\",\"PeriodicalId\":54412,\"journal\":{\"name\":\"Trends in Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.it.2024.11.007\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.it.2024.11.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Engineering immunity: bacterial delivery of cancer neoantigen vaccines.
In the battle against cancer, researchers are exploring the use of engineered bacteria as living medicines. Redenti and colleagues demonstrate that Escherichia coli Nissle 1917 (EcN) can be engineered to deliver cancer neoantigen payloads, stimulating antigen-specific CD4+ and CD8+ T cells and mediating antitumor immunity in preclinical models of colorectal cancer and melanoma.
期刊介绍:
Trends in Immunology serves as a vital platform for tracking advancements across various areas of immunology, offering concise reviews and hypothesis-driven viewpoints in each issue. With additional sections providing comprehensive coverage, the journal offers a holistic view of immunology. This broad perspective makes it an invaluable resource for researchers, educators, and students, facilitating the connection between basic and clinical immunology. Recognized as one of the top monthly review journals in its field, Trends in Immunology is highly regarded by the scientific community.