抑制 CHI3L1 可降低胶质母细胞瘤中 N-粘连蛋白和 VCAM-1 的水平。

IF 3.6 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Agnieszka Rusak, Marlena Gąsior-Głogowska, Azzurra Sargenti, Edward Krzyżak, Krzysztof Kotowski, Monika Mrozowska, Tomasz Górnicki, Krzysztof Kujawa, Piotr Dzięgiel
{"title":"抑制 CHI3L1 可降低胶质母细胞瘤中 N-粘连蛋白和 VCAM-1 的水平。","authors":"Agnieszka Rusak, Marlena Gąsior-Głogowska, Azzurra Sargenti, Edward Krzyżak, Krzysztof Kotowski, Monika Mrozowska, Tomasz Górnicki, Krzysztof Kujawa, Piotr Dzięgiel","doi":"10.1007/s43440-024-00677-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The protein CHI3L1 contributes to cancer development by several mechanisms, including stimulation of angiogenesis and invasion as well as immunomodulatory effects. These properties make it a potential target for the development of targeted therapies in precision medicine. In this context, the particular potential of CHI3L1 inhibition could be considered in glioblastoma multiforme (GBM), whose tumors exhibit high levels of angiogenesis and increased CHI3L1 expression. This study aims to investigate whether inhibition of CHI3L1 in spheroids used as a GBM model affects the mechanisms of invasiveness; METHODS: We analyzed the interactions between CHI3L1 and the inhibitor G721-0282 in molecular docking and molecular dynamics (in silico) and infrared spectroscopy. Uptake of G721-0282 in GBM spheroids was measured using a label-free physical cytometer. Changes in E-, N- and VE-cadherins, VCAM-1, and EGFR were analyzed by immunohistochemical reactions, Western blot, and ddPCR methods in U-87 MG cells and GBM spheroids consisting of U-87 MG glioblastoma cells, HMEC-1 endothelial cells and macrophages; RESULTS: A direct interaction between CHI3L1 and G721-0282 was confirmed. G721-0282 decreased N-cadherins and VCAM-1 in GBM spheroids, but the changes in the 2D model of U-87 MG glioblastoma cells were different; CONCLUSION: Inhibition of CHI3L1 has the potential to reduce the invasiveness of GBM tumors. The 3D model of GBM spheroids is of great significance for investigating changes in membrane proteins and the tumor microenvironment.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of CHI3L1 decreases N-cadherin and VCAM-1 levels in glioblastoma.\",\"authors\":\"Agnieszka Rusak, Marlena Gąsior-Głogowska, Azzurra Sargenti, Edward Krzyżak, Krzysztof Kotowski, Monika Mrozowska, Tomasz Górnicki, Krzysztof Kujawa, Piotr Dzięgiel\",\"doi\":\"10.1007/s43440-024-00677-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The protein CHI3L1 contributes to cancer development by several mechanisms, including stimulation of angiogenesis and invasion as well as immunomodulatory effects. These properties make it a potential target for the development of targeted therapies in precision medicine. In this context, the particular potential of CHI3L1 inhibition could be considered in glioblastoma multiforme (GBM), whose tumors exhibit high levels of angiogenesis and increased CHI3L1 expression. This study aims to investigate whether inhibition of CHI3L1 in spheroids used as a GBM model affects the mechanisms of invasiveness; METHODS: We analyzed the interactions between CHI3L1 and the inhibitor G721-0282 in molecular docking and molecular dynamics (in silico) and infrared spectroscopy. Uptake of G721-0282 in GBM spheroids was measured using a label-free physical cytometer. Changes in E-, N- and VE-cadherins, VCAM-1, and EGFR were analyzed by immunohistochemical reactions, Western blot, and ddPCR methods in U-87 MG cells and GBM spheroids consisting of U-87 MG glioblastoma cells, HMEC-1 endothelial cells and macrophages; RESULTS: A direct interaction between CHI3L1 and G721-0282 was confirmed. G721-0282 decreased N-cadherins and VCAM-1 in GBM spheroids, but the changes in the 2D model of U-87 MG glioblastoma cells were different; CONCLUSION: Inhibition of CHI3L1 has the potential to reduce the invasiveness of GBM tumors. The 3D model of GBM spheroids is of great significance for investigating changes in membrane proteins and the tumor microenvironment.</p>\",\"PeriodicalId\":19947,\"journal\":{\"name\":\"Pharmacological Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43440-024-00677-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00677-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:蛋白质 CHI3L1 通过多种机制促进癌症的发展,包括刺激血管生成和侵袭以及免疫调节作用。这些特性使其成为开发精准医学靶向疗法的潜在目标。在此背景下,CHI3L1抑制剂在多形性胶质母细胞瘤(GBM)中的特殊潜力值得考虑,这种肿瘤表现出高水平的血管生成和CHI3L1表达增加。本研究旨在探讨在作为 GBM 模型的球体内抑制 CHI3L1 是否会影响侵袭性机制;方法:我们通过分子对接、分子动力学(in silico)和红外光谱分析了 CHI3L1 与抑制剂 G721-0282 之间的相互作用。使用无标记物理细胞计测量了GBM球体内对G721-0282的吸收。在 U-87 MG 细胞和由 U-87 MG 胶质母细胞瘤细胞、HMEC-1 内皮细胞和巨噬细胞组成的 GBM 球体内,通过免疫组化反应、Western 印迹和 ddPCR 方法分析了 E、N 和 VE 粘连蛋白、VCAM-1 和表皮生长因子受体的变化;结果:证实了 CHI3L1 与 G721-0282 之间的直接相互作用。G721-0282能降低GBM球形细胞中的N-粘连蛋白和VCAM-1,但在U-87 MG胶质母细胞瘤细胞的二维模型中的变化有所不同;结论:抑制CHI3L1有可能降低GBM肿瘤的侵袭性。GBM球形细胞的三维模型对于研究膜蛋白和肿瘤微环境的变化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of CHI3L1 decreases N-cadherin and VCAM-1 levels in glioblastoma.

Background: The protein CHI3L1 contributes to cancer development by several mechanisms, including stimulation of angiogenesis and invasion as well as immunomodulatory effects. These properties make it a potential target for the development of targeted therapies in precision medicine. In this context, the particular potential of CHI3L1 inhibition could be considered in glioblastoma multiforme (GBM), whose tumors exhibit high levels of angiogenesis and increased CHI3L1 expression. This study aims to investigate whether inhibition of CHI3L1 in spheroids used as a GBM model affects the mechanisms of invasiveness; METHODS: We analyzed the interactions between CHI3L1 and the inhibitor G721-0282 in molecular docking and molecular dynamics (in silico) and infrared spectroscopy. Uptake of G721-0282 in GBM spheroids was measured using a label-free physical cytometer. Changes in E-, N- and VE-cadherins, VCAM-1, and EGFR were analyzed by immunohistochemical reactions, Western blot, and ddPCR methods in U-87 MG cells and GBM spheroids consisting of U-87 MG glioblastoma cells, HMEC-1 endothelial cells and macrophages; RESULTS: A direct interaction between CHI3L1 and G721-0282 was confirmed. G721-0282 decreased N-cadherins and VCAM-1 in GBM spheroids, but the changes in the 2D model of U-87 MG glioblastoma cells were different; CONCLUSION: Inhibition of CHI3L1 has the potential to reduce the invasiveness of GBM tumors. The 3D model of GBM spheroids is of great significance for investigating changes in membrane proteins and the tumor microenvironment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacological Reports
Pharmacological Reports 医学-药学
CiteScore
8.40
自引率
0.00%
发文量
91
审稿时长
6 months
期刊介绍: Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures. Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology. Studies of plant extracts are not suitable for Pharmacological Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信