Teja Guda, Jessica M. Stukel Shah, Bridney D. Lundquist, Joseph M. Macaitis, Mística Lozano Pérez, Michaela R. Pfau-Cloud, Felipe O. Beltran, Connie W. Schmitt, Emily M. Corbin, Melissa A. Grunlan, Wen Lien, Heuy-Ching Wang, Alexander J. Burdette
{"title":"用于骨再生的形状记忆聚合物支架上不同间充质基质细胞组织类型及其分化状态的体内评估。","authors":"Teja Guda, Jessica M. Stukel Shah, Bridney D. Lundquist, Joseph M. Macaitis, Mística Lozano Pérez, Michaela R. Pfau-Cloud, Felipe O. Beltran, Connie W. Schmitt, Emily M. Corbin, Melissa A. Grunlan, Wen Lien, Heuy-Ching Wang, Alexander J. Burdette","doi":"10.1002/jbm.b.35516","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.69% ± 1.64%) compared to empty (i.e., untreated) defects and scaffold-only (i.e., unseeded) groups (4.41% ± 1.11%). Notably, only differentiated UCSCs exhibited a significant increase in new bone volume, surpassing both undifferentiated UCSCs and unseeded scaffolds. Further, differentiated ADSCs and UCSCs had significantly higher trabecular numbers than their undifferentiated counterparts, unseeded scaffolds, and untreated defects. Although the mineral density regenerated within the unseeded scaffold surpassed that achieved with cell seeding, the connectivity of this bone was diminished, as the regenerated tissue confined itself to the spherical morphology of the scaffold pores. The SMP scaffold alone, with undifferentiated BMSCs, with undifferentiated and differentiated ADSCs, and differentiated UCSCs (29.72 ± 1.49 N) demonstrated significant osseointegration compared to empty defects (14.34 ± 2.21 N) after 12 weeks of healing when assessed by mechanical push-out testing. Based on these results and tissue availability to obtain the cells, pre-differentiated ADSCs and UCSCs emerge as particularly promising candidates when paired with the SMP scaffold for repairing critical size bone defects in the craniofacial skeleton.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration\",\"authors\":\"Teja Guda, Jessica M. Stukel Shah, Bridney D. Lundquist, Joseph M. Macaitis, Mística Lozano Pérez, Michaela R. Pfau-Cloud, Felipe O. Beltran, Connie W. Schmitt, Emily M. Corbin, Melissa A. Grunlan, Wen Lien, Heuy-Ching Wang, Alexander J. Burdette\",\"doi\":\"10.1002/jbm.b.35516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.69% ± 1.64%) compared to empty (i.e., untreated) defects and scaffold-only (i.e., unseeded) groups (4.41% ± 1.11%). Notably, only differentiated UCSCs exhibited a significant increase in new bone volume, surpassing both undifferentiated UCSCs and unseeded scaffolds. Further, differentiated ADSCs and UCSCs had significantly higher trabecular numbers than their undifferentiated counterparts, unseeded scaffolds, and untreated defects. Although the mineral density regenerated within the unseeded scaffold surpassed that achieved with cell seeding, the connectivity of this bone was diminished, as the regenerated tissue confined itself to the spherical morphology of the scaffold pores. The SMP scaffold alone, with undifferentiated BMSCs, with undifferentiated and differentiated ADSCs, and differentiated UCSCs (29.72 ± 1.49 N) demonstrated significant osseointegration compared to empty defects (14.34 ± 2.21 N) after 12 weeks of healing when assessed by mechanical push-out testing. Based on these results and tissue availability to obtain the cells, pre-differentiated ADSCs and UCSCs emerge as particularly promising candidates when paired with the SMP scaffold for repairing critical size bone defects in the craniofacial skeleton.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":\"112 12\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35516\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35516","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration
A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.69% ± 1.64%) compared to empty (i.e., untreated) defects and scaffold-only (i.e., unseeded) groups (4.41% ± 1.11%). Notably, only differentiated UCSCs exhibited a significant increase in new bone volume, surpassing both undifferentiated UCSCs and unseeded scaffolds. Further, differentiated ADSCs and UCSCs had significantly higher trabecular numbers than their undifferentiated counterparts, unseeded scaffolds, and untreated defects. Although the mineral density regenerated within the unseeded scaffold surpassed that achieved with cell seeding, the connectivity of this bone was diminished, as the regenerated tissue confined itself to the spherical morphology of the scaffold pores. The SMP scaffold alone, with undifferentiated BMSCs, with undifferentiated and differentiated ADSCs, and differentiated UCSCs (29.72 ± 1.49 N) demonstrated significant osseointegration compared to empty defects (14.34 ± 2.21 N) after 12 weeks of healing when assessed by mechanical push-out testing. Based on these results and tissue availability to obtain the cells, pre-differentiated ADSCs and UCSCs emerge as particularly promising candidates when paired with the SMP scaffold for repairing critical size bone defects in the craniofacial skeleton.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.