Liang Gong, He Liu, Bo Xu, Tao Yu, Yi Wang, Sheng-Li Niu, Rong Zeng, Qin Ouyang
{"title":"探索四氢化萘的治疗潜力和结构改造的见解。","authors":"Liang Gong, He Liu, Bo Xu, Tao Yu, Yi Wang, Sheng-Li Niu, Rong Zeng, Qin Ouyang","doi":"10.1080/17568919.2024.2432297","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid from <i>Stephania tetrandra</i>, is noted for its diverse pharmacological effects but faces limitations in clinical use due to toxicity, poor solubility, and low bioavailability. Researchers are working to address these issues by developing Tet derivatives with greater therapeutic potential through structural modification. Generally, key modifications include: 1) introducing an aromatic heterocycle or a hydrophobic alkyne unit at the <i>C</i>-5 position can enhance its antitumor activity; 2) adding an amide, sulfonamide, or electron-withdrawing group at the <i>C</i>-14 position can enhance its antitumor activity; 3) changing its structure to a quaternary ammonium salt can alter its solubility and greatly boost its antibacterial activity; 4) structural modification of the <i>C</i>-12-methoxybenzyl motif can enhance its metabolic stability and thus change the activity of the analogs; 5) Tet structural simplification may result in the identification of anticancer lead compounds with novel mechanisms of action. This review systematically summarizes these modification strategies and evaluates the biological activities of Tet derivatives, aiming to guide further optimization and facilitate the discovery of lead analogs with improved efficacy. The future direction and possibility of Tet structural optimization are also considered.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-14"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights on exploring the therapeutic potential and structural modification of Tetrandrine.\",\"authors\":\"Liang Gong, He Liu, Bo Xu, Tao Yu, Yi Wang, Sheng-Li Niu, Rong Zeng, Qin Ouyang\",\"doi\":\"10.1080/17568919.2024.2432297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid from <i>Stephania tetrandra</i>, is noted for its diverse pharmacological effects but faces limitations in clinical use due to toxicity, poor solubility, and low bioavailability. Researchers are working to address these issues by developing Tet derivatives with greater therapeutic potential through structural modification. Generally, key modifications include: 1) introducing an aromatic heterocycle or a hydrophobic alkyne unit at the <i>C</i>-5 position can enhance its antitumor activity; 2) adding an amide, sulfonamide, or electron-withdrawing group at the <i>C</i>-14 position can enhance its antitumor activity; 3) changing its structure to a quaternary ammonium salt can alter its solubility and greatly boost its antibacterial activity; 4) structural modification of the <i>C</i>-12-methoxybenzyl motif can enhance its metabolic stability and thus change the activity of the analogs; 5) Tet structural simplification may result in the identification of anticancer lead compounds with novel mechanisms of action. This review systematically summarizes these modification strategies and evaluates the biological activities of Tet derivatives, aiming to guide further optimization and facilitate the discovery of lead analogs with improved efficacy. The future direction and possibility of Tet structural optimization are also considered.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2432297\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2432297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Insights on exploring the therapeutic potential and structural modification of Tetrandrine.
Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid from Stephania tetrandra, is noted for its diverse pharmacological effects but faces limitations in clinical use due to toxicity, poor solubility, and low bioavailability. Researchers are working to address these issues by developing Tet derivatives with greater therapeutic potential through structural modification. Generally, key modifications include: 1) introducing an aromatic heterocycle or a hydrophobic alkyne unit at the C-5 position can enhance its antitumor activity; 2) adding an amide, sulfonamide, or electron-withdrawing group at the C-14 position can enhance its antitumor activity; 3) changing its structure to a quaternary ammonium salt can alter its solubility and greatly boost its antibacterial activity; 4) structural modification of the C-12-methoxybenzyl motif can enhance its metabolic stability and thus change the activity of the analogs; 5) Tet structural simplification may result in the identification of anticancer lead compounds with novel mechanisms of action. This review systematically summarizes these modification strategies and evaluates the biological activities of Tet derivatives, aiming to guide further optimization and facilitate the discovery of lead analogs with improved efficacy. The future direction and possibility of Tet structural optimization are also considered.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.