{"title":"作为抗氧化剂和 α 淀粉酶抑制剂的 5-酰基-4-羟基吡啶-2(1H)-酮衍生物的无害环境合成。","authors":"Neelam Yadav, Ravi Kumar, Sarita Sangwan, Vidhi Dhanda, Anil Duhan, Jayant Sindhu","doi":"10.1080/17568919.2024.2432289","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also.</p><p><strong>Materials & methods: </strong>An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential.</p><p><strong>Results: </strong>Among all the synthesized compounds, <b>4a, 4c</b>, and <b>4d</b> displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC<sub>50</sub> values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC<sub>50</sub> = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition.</p><p><strong>Conclusion: </strong>Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environment benign synthesis of 5-acyl-4-hydroxypyridin-2(1<i>H</i>)-one derivatives as antioxidant and <i>α</i>-amylase inhibitors.\",\"authors\":\"Neelam Yadav, Ravi Kumar, Sarita Sangwan, Vidhi Dhanda, Anil Duhan, Jayant Sindhu\",\"doi\":\"10.1080/17568919.2024.2432289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also.</p><p><strong>Materials & methods: </strong>An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential.</p><p><strong>Results: </strong>Among all the synthesized compounds, <b>4a, 4c</b>, and <b>4d</b> displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC<sub>50</sub> values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC<sub>50</sub> = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition.</p><p><strong>Conclusion: </strong>Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2432289\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2432289","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Environment benign synthesis of 5-acyl-4-hydroxypyridin-2(1H)-one derivatives as antioxidant and α-amylase inhibitors.
Aim: Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also.
Materials & methods: An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential.
Results: Among all the synthesized compounds, 4a, 4c, and 4d displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC50 values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC50 = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition.
Conclusion: Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.