Gvozdev M Y, Turomsha I S, Loginova N V, Varfolomeeva E Y, Kovalev R A, Fedorova N D, Ksendzova G A, Osipovich N P, Sverdlov R L
{"title":"儿茶酚衍生曼尼希碱:自由基调节特性、细胞毒性以及与生物大分子的相互作用。","authors":"Gvozdev M Y, Turomsha I S, Loginova N V, Varfolomeeva E Y, Kovalev R A, Fedorova N D, Ksendzova G A, Osipovich N P, Sverdlov R L","doi":"10.1080/10715762.2024.2433985","DOIUrl":null,"url":null,"abstract":"<p><p>Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers. It has been found that the plausible mechanism of the DPPH radical scavenging proceeds <i>via</i> quinone formation, followed by their interaction with ethanol <i>via</i> the Michael addition reaction. In the neutrophil respiratory burst assay, several compounds have demonstrated a weak antioxidant activity at the micromolar level (0.1-10 µM), whereas at the millimolar level (0.1 mМ) a strong pro-oxidant effect has been observed. Additionally, at the highest used concentrations a pronounced cytotoxicity against dermal fibroblasts DF-2 and an immunosuppressive effect against T-lymphocytes have been observed for all the synthesized compounds. It has been demonstrated that the oxidation of catechols in the presence of low-molecular thiols results in the formation of covalent adducts, which provides an insight into their cytotoxicity and detoxification pathways.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-12"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catechol-derived Mannich bases: radical regulatory properties, cytotoxicity and interaction with biomolecules.\",\"authors\":\"Gvozdev M Y, Turomsha I S, Loginova N V, Varfolomeeva E Y, Kovalev R A, Fedorova N D, Ksendzova G A, Osipovich N P, Sverdlov R L\",\"doi\":\"10.1080/10715762.2024.2433985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers. It has been found that the plausible mechanism of the DPPH radical scavenging proceeds <i>via</i> quinone formation, followed by their interaction with ethanol <i>via</i> the Michael addition reaction. In the neutrophil respiratory burst assay, several compounds have demonstrated a weak antioxidant activity at the micromolar level (0.1-10 µM), whereas at the millimolar level (0.1 mМ) a strong pro-oxidant effect has been observed. Additionally, at the highest used concentrations a pronounced cytotoxicity against dermal fibroblasts DF-2 and an immunosuppressive effect against T-lymphocytes have been observed for all the synthesized compounds. It has been demonstrated that the oxidation of catechols in the presence of low-molecular thiols results in the formation of covalent adducts, which provides an insight into their cytotoxicity and detoxification pathways.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2433985\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2433985","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Catechol-derived Mannich bases: radical regulatory properties, cytotoxicity and interaction with biomolecules.
Free radicals are ubiquitous in biological systems, being responsible for pathogenesis of degenerative diseases and participating in vitally important biochemical processes, which are mediated by radical regulatory agents. The effects of the aliphatic amine substituents in the catechol-derived Mannich bases on their antioxidant and pro-oxidant activity were investigated. It has been found that the presence of catechol moiety in the structure of Mannich bases allows them to act as Cu(II) reductants, efficient Fe(II) chelators and potent DPPH radical scavengers. It has been found that the plausible mechanism of the DPPH radical scavenging proceeds via quinone formation, followed by their interaction with ethanol via the Michael addition reaction. In the neutrophil respiratory burst assay, several compounds have demonstrated a weak antioxidant activity at the micromolar level (0.1-10 µM), whereas at the millimolar level (0.1 mМ) a strong pro-oxidant effect has been observed. Additionally, at the highest used concentrations a pronounced cytotoxicity against dermal fibroblasts DF-2 and an immunosuppressive effect against T-lymphocytes have been observed for all the synthesized compounds. It has been demonstrated that the oxidation of catechols in the presence of low-molecular thiols results in the formation of covalent adducts, which provides an insight into their cytotoxicity and detoxification pathways.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.