通过过渡金属催化的腈插入进行骨架编辑。

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pratibha Bhatti, Anjali Gupta, Shubham B. Chaudhari, Rahul K. Valmiki, Joydev K. Laha, Srimanta Manna
{"title":"通过过渡金属催化的腈插入进行骨架编辑。","authors":"Pratibha Bhatti,&nbsp;Anjali Gupta,&nbsp;Shubham B. Chaudhari,&nbsp;Rahul K. Valmiki,&nbsp;Joydev K. Laha,&nbsp;Srimanta Manna","doi":"10.1002/tcr.202400184","DOIUrl":null,"url":null,"abstract":"<p>Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 12","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion\",\"authors\":\"Pratibha Bhatti,&nbsp;Anjali Gupta,&nbsp;Shubham B. Chaudhari,&nbsp;Rahul K. Valmiki,&nbsp;Joydev K. Laha,&nbsp;Srimanta Manna\",\"doi\":\"10.1002/tcr.202400184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\"24 12\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400184\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400184","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属烯属化合物是重要的活性合成中间体,被广泛用于构建生物相关的支架、配合物和功能化分子。通过腈或金属腈中间体插入单氮原子使环状分子扩环,已成为推动优势富氮化合物合成的一种前景广阔的现代策略。近年来,催化单个氮原子插入碳环并生成 N-杂环已成为现代合成方法的一个重要焦点,在药物化学、材料科学和工业中都有应用。催化单氮原子插入法在现代有机合成中的地位日益突出,因为它能从简单的原料中构建出高附加值的含氮杂环。在本综述中,我们将讨论利用过渡金属催化,通过单个氮原子插入来获得含氮杂环的骨架编辑这一迅速发展的领域,重点是各种碳环的氮插入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion

Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信