机器学习利用临床数据预测肺长Covid后遗症。

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Ermanno Cordelli, Paolo Soda, Sara Citter, Elia Schiavon, Christian Salvatore, Deborah Fazzini, Greta Clementi, Michaela Cellina, Andrea Cozzi, Chandra Bortolotto, Lorenzo Preda, Luisa Francini, Matteo Tortora, Isabella Castiglioni, Sergio Papa, Diego Sona, Marco Alì
{"title":"机器学习利用临床数据预测肺长Covid后遗症。","authors":"Ermanno Cordelli, Paolo Soda, Sara Citter, Elia Schiavon, Christian Salvatore, Deborah Fazzini, Greta Clementi, Michaela Cellina, Andrea Cozzi, Chandra Bortolotto, Lorenzo Preda, Luisa Francini, Matteo Tortora, Isabella Castiglioni, Sergio Papa, Diego Sona, Marco Alì","doi":"10.1186/s12911-024-02745-3","DOIUrl":null,"url":null,"abstract":"<p><p>Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables early treatment. In this work, we investigated three machine learning approaches that use clinical data collected at the time of hospitalization to this goal. The first works with all the descriptors feeding a traditional shallow learner, the second exploits the benefits of an ensemble of classifiers, and the third is driven by the intrinsic multimodality of the data so that different models learn complementary information. The experiments on a new cohort of data from 152 patients show that it is possible to predict pulmonary Long Covid sequelae with an accuracy of up to <math><mrow><mn>94</mn> <mo>%</mo></mrow> </math> . As a further contribution, this work also publicly discloses the related data repository to foster research in this field.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"359"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning predicts pulmonary Long Covid sequelae using clinical data.\",\"authors\":\"Ermanno Cordelli, Paolo Soda, Sara Citter, Elia Schiavon, Christian Salvatore, Deborah Fazzini, Greta Clementi, Michaela Cellina, Andrea Cozzi, Chandra Bortolotto, Lorenzo Preda, Luisa Francini, Matteo Tortora, Isabella Castiglioni, Sergio Papa, Diego Sona, Marco Alì\",\"doi\":\"10.1186/s12911-024-02745-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables early treatment. In this work, we investigated three machine learning approaches that use clinical data collected at the time of hospitalization to this goal. The first works with all the descriptors feeding a traditional shallow learner, the second exploits the benefits of an ensemble of classifiers, and the third is driven by the intrinsic multimodality of the data so that different models learn complementary information. The experiments on a new cohort of data from 152 patients show that it is possible to predict pulmonary Long Covid sequelae with an accuracy of up to <math><mrow><mn>94</mn> <mo>%</mo></mrow> </math> . As a further contribution, this work also publicly discloses the related data repository to foster research in this field.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"24 1\",\"pages\":\"359\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-024-02745-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02745-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

长期慢性阻塞性肺气肿是一种多系统疾病,其特点是持续或出现多种症状,在许多情况下会影响肺部系统。这些症状反过来又会恶化患者的生活质量,使其更容易出现严重的并发症。因此,能够预测这种综合征是非常重要的,因为这有助于早期治疗。在这项工作中,我们研究了三种利用住院时收集的临床数据来实现这一目标的机器学习方法。第一种方法使用传统的浅层学习器对所有描述符进行学习,第二种方法利用了分类器集合的优势,第三种方法由数据的内在多模态性驱动,因此不同的模型可以学习到互补信息。对来自 152 名患者的新一批数据进行的实验表明,预测肺长Covid后遗症的准确率高达 94%。作为进一步的贡献,这项工作还公开披露了相关的数据存储库,以促进该领域的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning predicts pulmonary Long Covid sequelae using clinical data.

Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe complications. Being able to predict this syndrome is therefore important as this enables early treatment. In this work, we investigated three machine learning approaches that use clinical data collected at the time of hospitalization to this goal. The first works with all the descriptors feeding a traditional shallow learner, the second exploits the benefits of an ensemble of classifiers, and the third is driven by the intrinsic multimodality of the data so that different models learn complementary information. The experiments on a new cohort of data from 152 patients show that it is possible to predict pulmonary Long Covid sequelae with an accuracy of up to 94 % . As a further contribution, this work also publicly discloses the related data repository to foster research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信