Christopher K Materese, José C Aponte, Hannah L McLain, Kendra K Farnsworth, Patrick D Tribbett, Frank T Ferguson, Christine A Knudson, Amy C McAdam, Michael T Thorpe, Jason P Dworkin
{"title":"热液过程对氨基酸的简化陨石母体蜕变。","authors":"Christopher K Materese, José C Aponte, Hannah L McLain, Kendra K Farnsworth, Patrick D Tribbett, Frank T Ferguson, Christine A Knudson, Amy C McAdam, Michael T Thorpe, Jason P Dworkin","doi":"10.1089/ast.2024.0096","DOIUrl":null,"url":null,"abstract":"<p><p>Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1220-1230"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes.\",\"authors\":\"Christopher K Materese, José C Aponte, Hannah L McLain, Kendra K Farnsworth, Patrick D Tribbett, Frank T Ferguson, Christine A Knudson, Amy C McAdam, Michael T Thorpe, Jason P Dworkin\",\"doi\":\"10.1089/ast.2024.0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"1220-1230\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0096\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Simplified Meteorite Parent Body Alteration of Amino Acids by Hydrothermal Processes.
Amino acids have been identified in extraterrestrial materials such as meteorites and returned samples from asteroids and comets. Some of these amino acids or their precursors may have formed on icy interstellar dust grains or at a later phase when these grains became incorporated into larger parent bodies. In this work, we simulated parent body aqueous alteration of the residues from irradiated interstellar ice analogs in the presence of relevant minerals (pulverized serpentinite and Allende meteorite). We tracked the change in amino acid abundances as a function of hydrothermal processing time and examined how these differed based on the presence of minerals. We find that the presence of minerals and their mineralogy can have a significant impact on the formation and destruction of amino acids during simulated aqueous alteration experiments.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming