β3-肾上腺素受体激动剂模拟宫内缺氧的生物效应:向药理人工胎盘迈出一大步。

IF 10.9 1区 医学 Q1 CHEMISTRY, MEDICINAL
Luca Filippi, Francesca Innocenti, Francesca Pascarella, Rosa Teresa Scaramuzzo, Riccardo Morganti, Paola Bagnoli, Maurizio Cammalleri, Massimo Dal Monte, Maura Calvani, Alessandro Pini
{"title":"β3-肾上腺素受体激动剂模拟宫内缺氧的生物效应:向药理人工胎盘迈出一大步。","authors":"Luca Filippi, Francesca Innocenti, Francesca Pascarella, Rosa Teresa Scaramuzzo, Riccardo Morganti, Paola Bagnoli, Maurizio Cammalleri, Massimo Dal Monte, Maura Calvani, Alessandro Pini","doi":"10.1002/med.22092","DOIUrl":null,"url":null,"abstract":"<p><p>At different stages of life, from embryonic to postnatal, varying oxygen concentrations modulate cellular gene expression by enhancing or repressing hypoxia-inducible transcription factors. During embryonic/fetal life, these genes encode proteins involved in adapting to a low-oxygen environment, including the induction of specific enzymes related to glycolytic metabolism, erythropoiesis, angiogenesis, and vasculogenesis. However, oxygen concentrations fluctuate during intrauterine life, enabling the induction of tissue-specific differentiation processes. Fetal well-being is thus closely linked to the physiological benefits of a dynamically hypoxic environment. Premature birth entails the precocious exposure of the immature fetus to a more oxygen-rich environment compared to the womb. As a result, preterm newborns face a condition of relative hyperoxia, which alters the postnatal development of organs and contributes to prematurity-related diseases. However, until recently, the molecular mechanism by which high oxygen tension alters normal fetal differentiation remained unclear. In this review, we discuss the research trajectory followed by our research group, which suggests that early exposure to a relatively hyperoxic environment may impair preterm neonates due to reduced expression of the β<sub>3</sub>-adrenoceptor. Additionally, we explore how these impairments could be prevented through the pharmacological stimulation of the remaining β3-adrenoceptors. Recent preclinical studies demonstrate that pharmacological stimulation of the β<sub>3</sub>-adrenoceptor can decouple exposure to hyperoxia from its harmful effects, offering a glimpse of the possibility to recreating the conditions typical of intrauterine life, even after premature birth.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":" ","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β<sub>3</sub>-Adrenoceptor Agonism to Mimic the Biological Effects of Intrauterine Hypoxia: Taking Great Strides Toward a Pharmacological Artificial Placenta.\",\"authors\":\"Luca Filippi, Francesca Innocenti, Francesca Pascarella, Rosa Teresa Scaramuzzo, Riccardo Morganti, Paola Bagnoli, Maurizio Cammalleri, Massimo Dal Monte, Maura Calvani, Alessandro Pini\",\"doi\":\"10.1002/med.22092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At different stages of life, from embryonic to postnatal, varying oxygen concentrations modulate cellular gene expression by enhancing or repressing hypoxia-inducible transcription factors. During embryonic/fetal life, these genes encode proteins involved in adapting to a low-oxygen environment, including the induction of specific enzymes related to glycolytic metabolism, erythropoiesis, angiogenesis, and vasculogenesis. However, oxygen concentrations fluctuate during intrauterine life, enabling the induction of tissue-specific differentiation processes. Fetal well-being is thus closely linked to the physiological benefits of a dynamically hypoxic environment. Premature birth entails the precocious exposure of the immature fetus to a more oxygen-rich environment compared to the womb. As a result, preterm newborns face a condition of relative hyperoxia, which alters the postnatal development of organs and contributes to prematurity-related diseases. However, until recently, the molecular mechanism by which high oxygen tension alters normal fetal differentiation remained unclear. In this review, we discuss the research trajectory followed by our research group, which suggests that early exposure to a relatively hyperoxic environment may impair preterm neonates due to reduced expression of the β<sub>3</sub>-adrenoceptor. Additionally, we explore how these impairments could be prevented through the pharmacological stimulation of the remaining β3-adrenoceptors. Recent preclinical studies demonstrate that pharmacological stimulation of the β<sub>3</sub>-adrenoceptor can decouple exposure to hyperoxia from its harmful effects, offering a glimpse of the possibility to recreating the conditions typical of intrauterine life, even after premature birth.</p>\",\"PeriodicalId\":207,\"journal\":{\"name\":\"Medicinal Research Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/med.22092\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/med.22092","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

在从胚胎到出生后的不同生命阶段,不同的氧气浓度会通过增强或抑制低氧诱导转录因子来调节细胞基因的表达。在胚胎/胎儿时期,这些基因编码参与适应低氧环境的蛋白质,包括诱导与糖代谢、红细胞生成、血管生成和脉管生成有关的特定酶。然而,胎儿在宫内时氧气浓度会发生波动,从而诱导特定组织的分化过程。因此,胎儿的健康与动态缺氧环境的生理益处密切相关。早产意味着未成熟的胎儿过早地暴露在比子宫更富含氧气的环境中。因此,早产新生儿面临着相对高氧的条件,这会改变器官的产后发育,并导致与早产有关的疾病。然而,直到最近,高氧改变胎儿正常分化的分子机制仍不清楚。在这篇综述中,我们将讨论我们研究小组的研究轨迹,即早期暴露于相对高氧环境可能会因β3-肾上腺素受体表达减少而损害早产新生儿。此外,我们还探讨了如何通过药理刺激剩余的 β3-肾上腺素受体来预防这些损伤。最近的临床前研究表明,对β3-肾上腺素受体的药理刺激可以解除暴露于高氧环境的有害影响,从而为重现宫内生活(甚至早产后)的典型条件提供了一线希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
β3-Adrenoceptor Agonism to Mimic the Biological Effects of Intrauterine Hypoxia: Taking Great Strides Toward a Pharmacological Artificial Placenta.

At different stages of life, from embryonic to postnatal, varying oxygen concentrations modulate cellular gene expression by enhancing or repressing hypoxia-inducible transcription factors. During embryonic/fetal life, these genes encode proteins involved in adapting to a low-oxygen environment, including the induction of specific enzymes related to glycolytic metabolism, erythropoiesis, angiogenesis, and vasculogenesis. However, oxygen concentrations fluctuate during intrauterine life, enabling the induction of tissue-specific differentiation processes. Fetal well-being is thus closely linked to the physiological benefits of a dynamically hypoxic environment. Premature birth entails the precocious exposure of the immature fetus to a more oxygen-rich environment compared to the womb. As a result, preterm newborns face a condition of relative hyperoxia, which alters the postnatal development of organs and contributes to prematurity-related diseases. However, until recently, the molecular mechanism by which high oxygen tension alters normal fetal differentiation remained unclear. In this review, we discuss the research trajectory followed by our research group, which suggests that early exposure to a relatively hyperoxic environment may impair preterm neonates due to reduced expression of the β3-adrenoceptor. Additionally, we explore how these impairments could be prevented through the pharmacological stimulation of the remaining β3-adrenoceptors. Recent preclinical studies demonstrate that pharmacological stimulation of the β3-adrenoceptor can decouple exposure to hyperoxia from its harmful effects, offering a glimpse of the possibility to recreating the conditions typical of intrauterine life, even after premature birth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
29.30
自引率
0.00%
发文量
52
审稿时长
2 months
期刊介绍: Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field. Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信