通过飞灰制造的界面蒸发系统进行光热协同制氢。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yin Xie, Chenyu Xu, Yan Liu, Entao Zhang, Ziying Chen, Xiaopeng Zhan, Guangyu Deng, Yuan Gao, Yanwei Zhang
{"title":"通过飞灰制造的界面蒸发系统进行光热协同制氢。","authors":"Yin Xie,&nbsp;Chenyu Xu,&nbsp;Yan Liu,&nbsp;Entao Zhang,&nbsp;Ziying Chen,&nbsp;Xiaopeng Zhan,&nbsp;Guangyu Deng,&nbsp;Yuan Gao,&nbsp;Yanwei Zhang","doi":"10.1002/advs.202410201","DOIUrl":null,"url":null,"abstract":"<p>Employing UV–vis spectrum for hydrogen generation and vis-IR spectrum to elevate reaction temperatures and induce phase transitions effectively enhances yield and purifies water, demonstrating a judicious strategy for solar energy utilization. This study presents an interfacial photothermal water splitting system that utilizes all-inorganic, economical industrial by-products known as fly ash cenospheres (FAC) for solar-driven hydrogen generation. In this system, the yield reaches 254.8 µmol h<sup>−1</sup> cm<sup>−1</sup>, representing an 89% augmentation compared to that of the three-phase system. In situ experiments, combined with theoretical calculation, reveal the system's robust light absorption capacity, facilitating rapid gas separation, thus improves the solar-to-hydrogen (STH) efficiency. Furthermore, the system demonstrates strong performance in turbid water and scalability for expansive applications, achieving a hydrogen yield exceeding 50 L h<sup>−1</sup> m<sup>−2</sup> from various water sources. Facilitating large-scale hydrogen production and water purification, it thereby establishing its potential as a viable solution for sustainable energy generation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 3","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System\",\"authors\":\"Yin Xie,&nbsp;Chenyu Xu,&nbsp;Yan Liu,&nbsp;Entao Zhang,&nbsp;Ziying Chen,&nbsp;Xiaopeng Zhan,&nbsp;Guangyu Deng,&nbsp;Yuan Gao,&nbsp;Yanwei Zhang\",\"doi\":\"10.1002/advs.202410201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Employing UV–vis spectrum for hydrogen generation and vis-IR spectrum to elevate reaction temperatures and induce phase transitions effectively enhances yield and purifies water, demonstrating a judicious strategy for solar energy utilization. This study presents an interfacial photothermal water splitting system that utilizes all-inorganic, economical industrial by-products known as fly ash cenospheres (FAC) for solar-driven hydrogen generation. In this system, the yield reaches 254.8 µmol h<sup>−1</sup> cm<sup>−1</sup>, representing an 89% augmentation compared to that of the three-phase system. In situ experiments, combined with theoretical calculation, reveal the system's robust light absorption capacity, facilitating rapid gas separation, thus improves the solar-to-hydrogen (STH) efficiency. Furthermore, the system demonstrates strong performance in turbid water and scalability for expansive applications, achieving a hydrogen yield exceeding 50 L h<sup>−1</sup> m<sup>−2</sup> from various water sources. Facilitating large-scale hydrogen production and water purification, it thereby establishing its potential as a viable solution for sustainable energy generation.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202410201\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202410201","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用紫外-可见光谱产生氢气,利用可见-红外光谱提高反应温度并诱导相变,可有效提高产量并净化水质,是一种明智的太阳能利用策略。本研究介绍了一种界面光热水分离系统,该系统利用全无机、经济的工业副产品粉煤灰仙人球(FAC)进行太阳能制氢。在该系统中,产氢量达到 254.8 µmol h-1 cm-1,与三相系统相比提高了 89%。现场实验与理论计算相结合,揭示了该系统强大的光吸收能力,促进了气体的快速分离,从而提高了太阳能制氢(STH)的效率。此外,该系统在浊水中表现出强大的性能,并可扩展应用,从各种水源中获得超过 50 L h-1 m-2 的氢气产量。该系统促进了大规模氢气生产和水净化,从而确立了其作为可持续能源生产可行解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System

Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System

Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System

Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System

Photothermal Synergistic Hydrogen Production via a Fly-Ash-made Interfacial Vaporific System

Employing UV–vis spectrum for hydrogen generation and vis-IR spectrum to elevate reaction temperatures and induce phase transitions effectively enhances yield and purifies water, demonstrating a judicious strategy for solar energy utilization. This study presents an interfacial photothermal water splitting system that utilizes all-inorganic, economical industrial by-products known as fly ash cenospheres (FAC) for solar-driven hydrogen generation. In this system, the yield reaches 254.8 µmol h−1 cm−1, representing an 89% augmentation compared to that of the three-phase system. In situ experiments, combined with theoretical calculation, reveal the system's robust light absorption capacity, facilitating rapid gas separation, thus improves the solar-to-hydrogen (STH) efficiency. Furthermore, the system demonstrates strong performance in turbid water and scalability for expansive applications, achieving a hydrogen yield exceeding 50 L h−1 m−2 from various water sources. Facilitating large-scale hydrogen production and water purification, it thereby establishing its potential as a viable solution for sustainable energy generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信