机器学习心理疲劳测量微米厚弹性表皮电子元件(MMMEEE)。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-12-25 Epub Date: 2024-11-27 DOI:10.1021/acs.nanolett.4c02474
Haogeng Liu, Haichuan Li, Yexiong Wang, Yan Liu, Lizhi Xiao, Weidong Guo, Yaoguang Lin, Hongteng Wang, Tianqi Wang, Haiwang Yan, Shunkai Lai, Yaofei Chen, Zongxia Mou, Lei Chen, Yunhan Luo, Gui-Shi Liu, Xingcai Zhang
{"title":"机器学习心理疲劳测量微米厚弹性表皮电子元件(MMMEEE)。","authors":"Haogeng Liu, Haichuan Li, Yexiong Wang, Yan Liu, Lizhi Xiao, Weidong Guo, Yaoguang Lin, Hongteng Wang, Tianqi Wang, Haiwang Yan, Shunkai Lai, Yaofei Chen, Zongxia Mou, Lei Chen, Yunhan Luo, Gui-Shi Liu, Xingcai Zhang","doi":"10.1021/acs.nanolett.4c02474","DOIUrl":null,"url":null,"abstract":"<p><p>Electrophysiological (EP) signals are key biomarkers for monitoring mental fatigue (MF) and general health, but state-of-the-art wearable EP-based MF monitoring systems are bulky and require user-specific, labeled data. Ultrathin epidermal electrodes with high performance are ideal for constructing imperceptive EP sensing systems; however, the lack of a simple and scalable fabrication delays their application in MF recognition. Here, we report a facile, scalable printing-welding-transferring strategy (PWT) for printing μm-thickness micropatterned silver nanowires (AgNWs)/sticky polydimethylsiloxane, welding the AgNWs via plasmonic effect, and transferring the electrode to skin as tattoos. The PWT provides electrodes with conformability, comfort, and stability for EP sensing. Leveraging the facile and scalable PWT, we develop plug-and-play wireless multimodal epidermal electronics integrated with an unsupervised transfer learning (UTL) scheme for MF recognition across various users. The UTL adaptively minimizes the intersubject difference and achieves high accuracy, without demand of expensive computation and labels from target users.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"16221-16230"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE).\",\"authors\":\"Haogeng Liu, Haichuan Li, Yexiong Wang, Yan Liu, Lizhi Xiao, Weidong Guo, Yaoguang Lin, Hongteng Wang, Tianqi Wang, Haiwang Yan, Shunkai Lai, Yaofei Chen, Zongxia Mou, Lei Chen, Yunhan Luo, Gui-Shi Liu, Xingcai Zhang\",\"doi\":\"10.1021/acs.nanolett.4c02474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrophysiological (EP) signals are key biomarkers for monitoring mental fatigue (MF) and general health, but state-of-the-art wearable EP-based MF monitoring systems are bulky and require user-specific, labeled data. Ultrathin epidermal electrodes with high performance are ideal for constructing imperceptive EP sensing systems; however, the lack of a simple and scalable fabrication delays their application in MF recognition. Here, we report a facile, scalable printing-welding-transferring strategy (PWT) for printing μm-thickness micropatterned silver nanowires (AgNWs)/sticky polydimethylsiloxane, welding the AgNWs via plasmonic effect, and transferring the electrode to skin as tattoos. The PWT provides electrodes with conformability, comfort, and stability for EP sensing. Leveraging the facile and scalable PWT, we develop plug-and-play wireless multimodal epidermal electronics integrated with an unsupervised transfer learning (UTL) scheme for MF recognition across various users. The UTL adaptively minimizes the intersubject difference and achieves high accuracy, without demand of expensive computation and labels from target users.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\" \",\"pages\":\"16221-16230\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02474\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02474","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电生理(EP)信号是监测精神疲劳(MF)和一般健康状况的关键生物标志物,但最先进的基于电生理信号的可穿戴式精神疲劳监测系统十分笨重,而且需要用户特定的标记数据。具有高性能的超薄表皮电极是构建无感知 EP 传感系统的理想选择;然而,由于缺乏简单且可扩展的制造方法,它们在中频识别中的应用受到了延误。在此,我们报告了一种简便、可扩展的印刷-焊接-转移策略(PWT),用于印刷微米厚的微图案银纳米线(AgNWs)/粘性聚二甲基硅氧烷,通过等离子效应焊接 AgNWs,并将电极作为纹身转移到皮肤上。PWT 为 EP 传感提供了具有保形性、舒适性和稳定性的电极。利用简便且可扩展的PWT,我们开发了即插即用的无线多模态表皮电子器件,并集成了无监督转移学习(UTL)方案,用于识别不同用户的中频。UTL能自适应地最小化受试者间的差异,并实现高准确度,而无需昂贵的计算和目标用户的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE).

Machine-Learning Mental-Fatigue-Measuring μm-Thick Elastic Epidermal Electronics (MMMEEE).

Electrophysiological (EP) signals are key biomarkers for monitoring mental fatigue (MF) and general health, but state-of-the-art wearable EP-based MF monitoring systems are bulky and require user-specific, labeled data. Ultrathin epidermal electrodes with high performance are ideal for constructing imperceptive EP sensing systems; however, the lack of a simple and scalable fabrication delays their application in MF recognition. Here, we report a facile, scalable printing-welding-transferring strategy (PWT) for printing μm-thickness micropatterned silver nanowires (AgNWs)/sticky polydimethylsiloxane, welding the AgNWs via plasmonic effect, and transferring the electrode to skin as tattoos. The PWT provides electrodes with conformability, comfort, and stability for EP sensing. Leveraging the facile and scalable PWT, we develop plug-and-play wireless multimodal epidermal electronics integrated with an unsupervised transfer learning (UTL) scheme for MF recognition across various users. The UTL adaptively minimizes the intersubject difference and achieves high accuracy, without demand of expensive computation and labels from target users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信