Alexey A Akulov, Anastasia I Silaeva, Mikhail V Varaksin, Ilya I Butorin, Daniil N Lyapustin, Roman A Drokin, Svetlana K Kotovskaya, Anna V Zaykovskaya, Oleg V Pyankov, Vladimir L Rusinov, Valery N Charushin, Oleg N Chupakhin
{"title":"偶氮嘧啶基硫醚:通过交叉脱氢 C-S 偶联合成和抗 SARS-CoV-2 活性的硅学评估。","authors":"Alexey A Akulov, Anastasia I Silaeva, Mikhail V Varaksin, Ilya I Butorin, Daniil N Lyapustin, Roman A Drokin, Svetlana K Kotovskaya, Anna V Zaykovskaya, Oleg V Pyankov, Vladimir L Rusinov, Valery N Charushin, Oleg N Chupakhin","doi":"10.1002/cplu.202400594","DOIUrl":null,"url":null,"abstract":"<p><p>Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87%. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400594"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Azolopyrimidine-Based Thioethers: Synthesis via Cross-Dehydrogenative C-S Coupling and In Silico Evaluation of Anti-SARS-CoV-2 Activity.\",\"authors\":\"Alexey A Akulov, Anastasia I Silaeva, Mikhail V Varaksin, Ilya I Butorin, Daniil N Lyapustin, Roman A Drokin, Svetlana K Kotovskaya, Anna V Zaykovskaya, Oleg V Pyankov, Vladimir L Rusinov, Valery N Charushin, Oleg N Chupakhin\",\"doi\":\"10.1002/cplu.202400594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87%. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400594\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400594\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400594","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Azolopyrimidine-Based Thioethers: Synthesis via Cross-Dehydrogenative C-S Coupling and In Silico Evaluation of Anti-SARS-CoV-2 Activity.
Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp2)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system. The reported herein sulfenylation protocol has afforded a series of previously undescribed azolopyrimidine-based thioethers obtained in yields of up to 87%. Applicability of the approach to the selenium-centered synthons has been demonstrated as well. Besides, the in silico study with regard to the achieved cross-coupling products has suggested the possible affinity to the SARS-CoV-2 main protease (Mpro), as follows from the conducted pharmacophore search and the molecular docking experiments. As a result, the developed synthetic transformation is expected to be of utility in the design of novel antiviral agents based on small azaheterocyclic molecules.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.