Hae-Bin Park, Eun-Koung An, So-Jung Kim, Dayoung Ryu, Wei Zhang, Chan-Gi Pack, Hyuncheol Kim, Minseok Kwak, Wonpil Im, Ja-Hyoung Ryu, Peter C W Lee, Jun-O Jin
{"title":"与肿瘤靶向脂质纳米粒子相连的抗 PD-L1 抗体片段可通过光免疫疗法消除癌症及其转移。","authors":"Hae-Bin Park, Eun-Koung An, So-Jung Kim, Dayoung Ryu, Wei Zhang, Chan-Gi Pack, Hyuncheol Kim, Minseok Kwak, Wonpil Im, Ja-Hyoung Ryu, Peter C W Lee, Jun-O Jin","doi":"10.1021/acsnano.4c08448","DOIUrl":null,"url":null,"abstract":"<p><p>Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"33366-33380"},"PeriodicalIF":16.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy.\",\"authors\":\"Hae-Bin Park, Eun-Koung An, So-Jung Kim, Dayoung Ryu, Wei Zhang, Chan-Gi Pack, Hyuncheol Kim, Minseok Kwak, Wonpil Im, Ja-Hyoung Ryu, Peter C W Lee, Jun-O Jin\",\"doi\":\"10.1021/acsnano.4c08448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"33366-33380\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08448\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08448","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anti-PD-L1 Antibody Fragment Linked to Tumor-Targeting Lipid Nanoparticle Can Eliminate Cancer and Its Metastasis via Photoimmunotherapy.
Effective cancer therapy aims to treat primary tumors and metastatic and recurrent cancer. Immune checkpoint blockade-mediated immunotherapy has shown promising effects against tumors; however, its efficacy in metastatic or recurrent cancer is limited. Here, based on the advantages of nanomedicine, lipid nanoparticles (LNPs) that can target tumors are synthesized for photothermal therapy (PTT) and immunotherapy to treat primary and metastatic recurrent cancer. These LNPs, termed piLNPs, are encapsulated with indocyanine green and incorporated with the antigen (Ag)-binding fragment of the anti-PD-L1 antibody for targeting tumors and immunotherapy. Intravenously injected piLNPs in 4T1 breast tumor-bearing BALB/c mice effectively target the 4T1 tumor and are suitable for performing PTT using a near-infrared laser. Moreover, lung metastatic 4T1 tumor growth is completely prevented in mice previously cured of the 4T1 breast tumor by piLNP treatment and rechallenged with lung 4T1 metastatic cancer. Blockage of the second challenged metastatic 4T1 breast cancer by piLNP is due to the activation of Ag-specific T cells. Cytotoxic T lymphocytes from piLNP-cured mice selectively attack 4T1 breast cancer cells. Therefore, piLNP can be used as a multifunctional breast cancer treatment composition that can target tumors, treat primary tumors, and prevent metastasis and recurrence.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.