Donggyu Lee, Jun Mo Koo, Yumi Cho, Jinsik Kim, Soyeon Kim, Dongyeop X. Oh, Hyeonyeol Jeon, Jeyoung Park
{"title":"利用天然纳米纤维素和纳米壳质的表面特性进行自清洁和净化应用的最新进展","authors":"Donggyu Lee, Jun Mo Koo, Yumi Cho, Jinsik Kim, Soyeon Kim, Dongyeop X. Oh, Hyeonyeol Jeon, Jeyoung Park","doi":"10.1002/bkcs.12906","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in the utilization of naturally derived nanocellulose and nanochitin/chitosan have opened new avenues for self-cleaning and purification applications to address environmental challenges. This review highlights the unique structural properties of bio-based nanofibers, which are typically rich in hydroxyl groups that enhance their functionality in various industrial sectors. Through appropriate chemical modification, they can perform specific functions facilitated by carboxylic acids or amine groups. We explored the mechanisms by which these materials facilitate oil/water separation, ultrafiltration, and self-cleaning processes, including the incorporation of inorganic nanoparticles, such as TiO<sub>2</sub>, to improve hydrophilicity and oleophobicity. Furthermore, this review discusses innovative fabrication techniques, such as spray-assisted layer-by-layer assembly, which enhance the performance of nanofiber-based coatings. We examined the potential of these materials for diverse applications, including food packaging, wastewater treatment, and personal protective equipment, emphasizing their role in promoting sustainable industrial practices. As the global emphasis on eco-friendly solutions intensifies, continued research and development of nanocellulose and nanochitin is expected to drive significant advancements in materials science, paving the way for greener technologies.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 11","pages":"880-895"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12906","citationCount":"0","resultStr":"{\"title\":\"Recent advances in utilizing surface-features of naturally derived nanocellulose and nanochitin for self-cleaning and purifying applications\",\"authors\":\"Donggyu Lee, Jun Mo Koo, Yumi Cho, Jinsik Kim, Soyeon Kim, Dongyeop X. Oh, Hyeonyeol Jeon, Jeyoung Park\",\"doi\":\"10.1002/bkcs.12906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in the utilization of naturally derived nanocellulose and nanochitin/chitosan have opened new avenues for self-cleaning and purification applications to address environmental challenges. This review highlights the unique structural properties of bio-based nanofibers, which are typically rich in hydroxyl groups that enhance their functionality in various industrial sectors. Through appropriate chemical modification, they can perform specific functions facilitated by carboxylic acids or amine groups. We explored the mechanisms by which these materials facilitate oil/water separation, ultrafiltration, and self-cleaning processes, including the incorporation of inorganic nanoparticles, such as TiO<sub>2</sub>, to improve hydrophilicity and oleophobicity. Furthermore, this review discusses innovative fabrication techniques, such as spray-assisted layer-by-layer assembly, which enhance the performance of nanofiber-based coatings. We examined the potential of these materials for diverse applications, including food packaging, wastewater treatment, and personal protective equipment, emphasizing their role in promoting sustainable industrial practices. As the global emphasis on eco-friendly solutions intensifies, continued research and development of nanocellulose and nanochitin is expected to drive significant advancements in materials science, paving the way for greener technologies.</p>\",\"PeriodicalId\":54252,\"journal\":{\"name\":\"Bulletin of the Korean Chemical Society\",\"volume\":\"45 11\",\"pages\":\"880-895\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bkcs.12906\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12906\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12906","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in utilizing surface-features of naturally derived nanocellulose and nanochitin for self-cleaning and purifying applications
Recent advancements in the utilization of naturally derived nanocellulose and nanochitin/chitosan have opened new avenues for self-cleaning and purification applications to address environmental challenges. This review highlights the unique structural properties of bio-based nanofibers, which are typically rich in hydroxyl groups that enhance their functionality in various industrial sectors. Through appropriate chemical modification, they can perform specific functions facilitated by carboxylic acids or amine groups. We explored the mechanisms by which these materials facilitate oil/water separation, ultrafiltration, and self-cleaning processes, including the incorporation of inorganic nanoparticles, such as TiO2, to improve hydrophilicity and oleophobicity. Furthermore, this review discusses innovative fabrication techniques, such as spray-assisted layer-by-layer assembly, which enhance the performance of nanofiber-based coatings. We examined the potential of these materials for diverse applications, including food packaging, wastewater treatment, and personal protective equipment, emphasizing their role in promoting sustainable industrial practices. As the global emphasis on eco-friendly solutions intensifies, continued research and development of nanocellulose and nanochitin is expected to drive significant advancements in materials science, paving the way for greener technologies.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.