{"title":"超宽带 3 路功率分配器/合路器的设计","authors":"Nagarakshith Mungara, Kamla Prasan Ray","doi":"10.1049/mia2.12504","DOIUrl":null,"url":null,"abstract":"<p>A 1:3-way power divider/combiner has been proposed for much improved bandwidth and isolation between output ports. The matching network for the super wide bandwidth frequency range is designed using a combination of the Klopfenstein taper and the triangular taper. The proposed design yields bandwidth from 1.5 to 20 GHz (18.5 GHz) for return loss better than 15 dB and isolation better than 20 dB. The insertion loss for the entire frequency band is 0.8 dB which is only 0.34 dB for the ultra-wide bandwidth (3.1–10.6 GHz). The maximum phase imbalance of 3.32° and amplitude imbalance of 0.199 dB between all the output ports have been achieved over the entire bandwidth. The simulated results have been validated experimentally.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 11","pages":"830-837"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12504","citationCount":"0","resultStr":"{\"title\":\"Design of super wide band 3-way power divider/combiner\",\"authors\":\"Nagarakshith Mungara, Kamla Prasan Ray\",\"doi\":\"10.1049/mia2.12504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A 1:3-way power divider/combiner has been proposed for much improved bandwidth and isolation between output ports. The matching network for the super wide bandwidth frequency range is designed using a combination of the Klopfenstein taper and the triangular taper. The proposed design yields bandwidth from 1.5 to 20 GHz (18.5 GHz) for return loss better than 15 dB and isolation better than 20 dB. The insertion loss for the entire frequency band is 0.8 dB which is only 0.34 dB for the ultra-wide bandwidth (3.1–10.6 GHz). The maximum phase imbalance of 3.32° and amplitude imbalance of 0.199 dB between all the output ports have been achieved over the entire bandwidth. The simulated results have been validated experimentally.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"18 11\",\"pages\":\"830-837\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12504\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12504\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12504","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of super wide band 3-way power divider/combiner
A 1:3-way power divider/combiner has been proposed for much improved bandwidth and isolation between output ports. The matching network for the super wide bandwidth frequency range is designed using a combination of the Klopfenstein taper and the triangular taper. The proposed design yields bandwidth from 1.5 to 20 GHz (18.5 GHz) for return loss better than 15 dB and isolation better than 20 dB. The insertion loss for the entire frequency band is 0.8 dB which is only 0.34 dB for the ultra-wide bandwidth (3.1–10.6 GHz). The maximum phase imbalance of 3.32° and amplitude imbalance of 0.199 dB between all the output ports have been achieved over the entire bandwidth. The simulated results have been validated experimentally.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf