Amirhossein Sadeghi Larimi, Hassan Jafari, Ahmad Sadeghzadeh
{"title":"在镁锌钙合金上开发溶胶凝胶羟基磷灰石-骨粉复合涂层并研究其腐蚀行为","authors":"Amirhossein Sadeghi Larimi, Hassan Jafari, Ahmad Sadeghzadeh","doi":"10.1007/s11837-024-06932-5","DOIUrl":null,"url":null,"abstract":"<div><p>Hydroxyapatite/bone powder composite coatings on ZX504 alloy have been developed using the sol–gel process and their corrosion behavior has been explored. The alloy was anodized in 1 M NaOH + 0.5 M Na<sub>2</sub>SiO<sub>3</sub> solution. An 0.5 P<sub>2</sub>O<sub>5</sub> + z 1.67 Ca(NO<sub>3</sub>)<sub>2</sub>.4H<sub>2</sub>O solution with 10 g/L, 20 g/L, and 30 g/L bone powder concentrations and 50 s, 100 s, and 150 s dip-coating durations, followed by calcination at 400°C, was used to develop the coatings. Microscopic analysis results disclosed the formation of a uniform and highly porous MgO film on the alloy to guarantee the subsequent coating adhesion. The results also confirmed the fruitful formation of smoother hydroxyapatite + bone powder composite coatings on the film. Electrochemical corrosion tests revealed that the alloy exhibited the lowest corrosion resistance, while the hydroxyapatite + 30 g/L bone powder composite-coated alloy possessed the best performance with a significantly low corrosion rate of 0.07 mm/year, suggesting the composite-coated alloy is a desired candidate for implant application.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 12","pages":"7186 - 7197"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Sol–Gel Hydroxyapatite-Bone Powder Composite Coatings on Mg-Zn-Ca Alloy and Studying Their Corrosion Behavior\",\"authors\":\"Amirhossein Sadeghi Larimi, Hassan Jafari, Ahmad Sadeghzadeh\",\"doi\":\"10.1007/s11837-024-06932-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydroxyapatite/bone powder composite coatings on ZX504 alloy have been developed using the sol–gel process and their corrosion behavior has been explored. The alloy was anodized in 1 M NaOH + 0.5 M Na<sub>2</sub>SiO<sub>3</sub> solution. An 0.5 P<sub>2</sub>O<sub>5</sub> + z 1.67 Ca(NO<sub>3</sub>)<sub>2</sub>.4H<sub>2</sub>O solution with 10 g/L, 20 g/L, and 30 g/L bone powder concentrations and 50 s, 100 s, and 150 s dip-coating durations, followed by calcination at 400°C, was used to develop the coatings. Microscopic analysis results disclosed the formation of a uniform and highly porous MgO film on the alloy to guarantee the subsequent coating adhesion. The results also confirmed the fruitful formation of smoother hydroxyapatite + bone powder composite coatings on the film. Electrochemical corrosion tests revealed that the alloy exhibited the lowest corrosion resistance, while the hydroxyapatite + 30 g/L bone powder composite-coated alloy possessed the best performance with a significantly low corrosion rate of 0.07 mm/year, suggesting the composite-coated alloy is a desired candidate for implant application.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 12\",\"pages\":\"7186 - 7197\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06932-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06932-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
采用溶胶-凝胶工艺在 ZX504 合金上开发了羟基磷灰石/骨粉复合涂层,并对其腐蚀行为进行了研究。合金在 1 M NaOH + 0.5 M Na2SiO3 溶液中进行阳极氧化。采用 0.5 P2O5 + z 1.67 Ca(NO3)2.4H2O 溶液,骨粉浓度分别为 10 g/L、20 g/L 和 30 g/L,浸涂时间分别为 50 s、100 s 和 150 s,然后在 400°C 煅烧,以形成涂层。显微分析结果表明,合金上形成了均匀且多孔的氧化镁膜,从而保证了后续涂层的附着力。结果还证实,在薄膜上形成的羟基磷灰石+骨粉复合涂层更加光滑。电化学腐蚀测试表明,合金的耐腐蚀性能最低,而羟基磷灰石 + 30 克/升骨粉复合涂层合金的性能最好,腐蚀速率明显降低,仅为 0.07 毫米/年,这表明复合涂层合金是植入应用的理想候选材料。
Developing Sol–Gel Hydroxyapatite-Bone Powder Composite Coatings on Mg-Zn-Ca Alloy and Studying Their Corrosion Behavior
Hydroxyapatite/bone powder composite coatings on ZX504 alloy have been developed using the sol–gel process and their corrosion behavior has been explored. The alloy was anodized in 1 M NaOH + 0.5 M Na2SiO3 solution. An 0.5 P2O5 + z 1.67 Ca(NO3)2.4H2O solution with 10 g/L, 20 g/L, and 30 g/L bone powder concentrations and 50 s, 100 s, and 150 s dip-coating durations, followed by calcination at 400°C, was used to develop the coatings. Microscopic analysis results disclosed the formation of a uniform and highly porous MgO film on the alloy to guarantee the subsequent coating adhesion. The results also confirmed the fruitful formation of smoother hydroxyapatite + bone powder composite coatings on the film. Electrochemical corrosion tests revealed that the alloy exhibited the lowest corrosion resistance, while the hydroxyapatite + 30 g/L bone powder composite-coated alloy possessed the best performance with a significantly low corrosion rate of 0.07 mm/year, suggesting the composite-coated alloy is a desired candidate for implant application.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.