Nabil N. AL-Hashimi, Qusi K. Alomoush, Amjad H. El-Sheikh, Nada A. Alsakhen, Thaer Barri, Jafar I. Abdelghani, Abdelrahim M. Alqudah
{"title":"基于天然深共晶溶剂的新型 Fe3O4-MWCNT 增强中空纤维固/液相微萃取技术,用于 HPLC-DAD 法测定水样中的痕量邻苯二甲酸酯类化合物","authors":"Nabil N. AL-Hashimi, Qusi K. Alomoush, Amjad H. El-Sheikh, Nada A. Alsakhen, Thaer Barri, Jafar I. Abdelghani, Abdelrahim M. Alqudah","doi":"10.1007/s11696-024-03752-4","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we present a new eco-friendly microextraction method based on the magnetite/multi-walled carbon nanotubes reinforced and natural deep eutectic-filled hollow fiber solid/liquid phase microextraction, abbreviated as HF-SLPME, combined with HPLC–DAD analysis. This method has been developed to determine trace levels of phthalate esters, including diethyl phthalate, benzyl butyl phthalate, and di-iso-butyl phthalate in urine, blood plasma, tap water, and groundwater samples. The natural deep eutectic solvents were prepared using terpenoid-derived natural compounds containing menthol and camphor in various ratios. The HF-SLPME device was constructed by reinforcing and immobilizing the synthesized Fe<sub>3</sub>O<sub>4</sub>-MWCNTs within the pores of a 2.5 cm segment of hollow fiber microtube through ultrasonication, followed by filling the lumen with the natural deep eutectic solvent with both ends heat sealing. The extraction process was conducted in direct immersion mode. Values of crucial variables for HF-SLPME were optimized through a multivariate methodology based on a central composite design, with 30 extraction tests performed to determine the best conditions. The method exhibited good linearity (correlation coefficients <i>R</i><sup>2</sup> > 0.996) over a dynamic range lower than 0.927–10<sup>3</sup> µg L<sup>−1</sup>. The results show that the limits of detection/quantification for the chosen PEs ranged from 0.19 to 0.27/ 0.65 to 0.92 µg L<sup>−1</sup> with enrichment factor˃ 37.24. As evidenced by intra- and inter-day precisions, satisfactory reproducibility was achieved with relative standard deviations (RSDs) below 3.7% and 5.1%, respectively. The recoveries of the selected phthalate esters from spiked real samples ranged from 88.4 to 111.1%, with relative standard deviations between 2.3 and 6.5%. This HF-SLPME-HPLC–DAD method offered a new, cost-effective, sensitive microextraction approach for determining and quantifying phthalate esters in aqueous samples with complex matrices.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 18","pages":"9415 - 9433"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new Fe3O4-MWCNTs-reinforced hollow fiber solid/liquid phase microextraction-based natural deep eutectic solvent for determination of trace phthalate esters in aqueous samples using HPLC–DAD\",\"authors\":\"Nabil N. AL-Hashimi, Qusi K. Alomoush, Amjad H. El-Sheikh, Nada A. Alsakhen, Thaer Barri, Jafar I. Abdelghani, Abdelrahim M. Alqudah\",\"doi\":\"10.1007/s11696-024-03752-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, we present a new eco-friendly microextraction method based on the magnetite/multi-walled carbon nanotubes reinforced and natural deep eutectic-filled hollow fiber solid/liquid phase microextraction, abbreviated as HF-SLPME, combined with HPLC–DAD analysis. This method has been developed to determine trace levels of phthalate esters, including diethyl phthalate, benzyl butyl phthalate, and di-iso-butyl phthalate in urine, blood plasma, tap water, and groundwater samples. The natural deep eutectic solvents were prepared using terpenoid-derived natural compounds containing menthol and camphor in various ratios. The HF-SLPME device was constructed by reinforcing and immobilizing the synthesized Fe<sub>3</sub>O<sub>4</sub>-MWCNTs within the pores of a 2.5 cm segment of hollow fiber microtube through ultrasonication, followed by filling the lumen with the natural deep eutectic solvent with both ends heat sealing. The extraction process was conducted in direct immersion mode. Values of crucial variables for HF-SLPME were optimized through a multivariate methodology based on a central composite design, with 30 extraction tests performed to determine the best conditions. The method exhibited good linearity (correlation coefficients <i>R</i><sup>2</sup> > 0.996) over a dynamic range lower than 0.927–10<sup>3</sup> µg L<sup>−1</sup>. The results show that the limits of detection/quantification for the chosen PEs ranged from 0.19 to 0.27/ 0.65 to 0.92 µg L<sup>−1</sup> with enrichment factor˃ 37.24. As evidenced by intra- and inter-day precisions, satisfactory reproducibility was achieved with relative standard deviations (RSDs) below 3.7% and 5.1%, respectively. The recoveries of the selected phthalate esters from spiked real samples ranged from 88.4 to 111.1%, with relative standard deviations between 2.3 and 6.5%. This HF-SLPME-HPLC–DAD method offered a new, cost-effective, sensitive microextraction approach for determining and quantifying phthalate esters in aqueous samples with complex matrices.</p></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"78 18\",\"pages\":\"9415 - 9433\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03752-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03752-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
A new Fe3O4-MWCNTs-reinforced hollow fiber solid/liquid phase microextraction-based natural deep eutectic solvent for determination of trace phthalate esters in aqueous samples using HPLC–DAD
Herein, we present a new eco-friendly microextraction method based on the magnetite/multi-walled carbon nanotubes reinforced and natural deep eutectic-filled hollow fiber solid/liquid phase microextraction, abbreviated as HF-SLPME, combined with HPLC–DAD analysis. This method has been developed to determine trace levels of phthalate esters, including diethyl phthalate, benzyl butyl phthalate, and di-iso-butyl phthalate in urine, blood plasma, tap water, and groundwater samples. The natural deep eutectic solvents were prepared using terpenoid-derived natural compounds containing menthol and camphor in various ratios. The HF-SLPME device was constructed by reinforcing and immobilizing the synthesized Fe3O4-MWCNTs within the pores of a 2.5 cm segment of hollow fiber microtube through ultrasonication, followed by filling the lumen with the natural deep eutectic solvent with both ends heat sealing. The extraction process was conducted in direct immersion mode. Values of crucial variables for HF-SLPME were optimized through a multivariate methodology based on a central composite design, with 30 extraction tests performed to determine the best conditions. The method exhibited good linearity (correlation coefficients R2 > 0.996) over a dynamic range lower than 0.927–103 µg L−1. The results show that the limits of detection/quantification for the chosen PEs ranged from 0.19 to 0.27/ 0.65 to 0.92 µg L−1 with enrichment factor˃ 37.24. As evidenced by intra- and inter-day precisions, satisfactory reproducibility was achieved with relative standard deviations (RSDs) below 3.7% and 5.1%, respectively. The recoveries of the selected phthalate esters from spiked real samples ranged from 88.4 to 111.1%, with relative standard deviations between 2.3 and 6.5%. This HF-SLPME-HPLC–DAD method offered a new, cost-effective, sensitive microextraction approach for determining and quantifying phthalate esters in aqueous samples with complex matrices.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.