离子液体功能化金纳米粒子装饰的集成四羟基酞菁涂层石墨烯用于果汁中抗坏血酸的高灵敏度和选择性电化学测定

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Lin Mei, Yanmei Shi, Xueke Ding, Jing Li
{"title":"离子液体功能化金纳米粒子装饰的集成四羟基酞菁涂层石墨烯用于果汁中抗坏血酸的高灵敏度和选择性电化学测定","authors":"Lin Mei,&nbsp;Yanmei Shi,&nbsp;Xueke Ding,&nbsp;Jing Li","doi":"10.1007/s00604-024-06852-w","DOIUrl":null,"url":null,"abstract":"<div><p>Surface functionalization and the combined utilization of zero‐dimensional and two‐dimensional nanomaterials is an effective method to achieve highly sensitive detection for electrochemical analysis. Using an all-in-one strategy, phthalocyanine, gold nanoparticles, and ionic liquid were successively modified on the graphene surface as a highly integrated electrode modification material. Phthalocyanine can repair the defects of reduced graphene oxide by binding to the graphene structure surface through non-covalent functionalization. The combination of ionic liquid on the surface of gold nanoparticles can enhance their physical and chemical activity while preserving their stability. The obtained phthalocyanine-coated graphene nanosheets decorated with ionic liquid-functionalized gold nanoparticles nanocomposites had enhanced electrocatalysis and conductivity ability, and were used for highly sensitive electrochemical detection of ascorbic acid in fruit juices. Excellent results were obtained for the detection of ascorbic acid in the linear range 0.05 to 50 µmol/L with a detection limit of 6.80 nmol/L (<i>S/N</i> = 3) and a sensitivity of 2.68 μA μM<sup>−1 </sup>cm<sup>−2</sup>, indicated that the proposed sensor strategy with multiple signal amplification can achieve higher detection sensitivity. Furthermore, the sensor was used to quantify ascorbic acid content in grapefruit and orange juice with good selectivity and accuracy. The highly integrated electroactive nanocomposites construction method described may also be used with other electrode modification materials and is anticipated to yield fresh perspectives on the advancement of ultrasensitive detection.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated tetrahydroxyphthalocyanine-coated graphene decorated with ionic liquid-functionalized gold nanoparticles for highly sensitive and selective electrochemical determination of ascorbic acid in fruit juices\",\"authors\":\"Lin Mei,&nbsp;Yanmei Shi,&nbsp;Xueke Ding,&nbsp;Jing Li\",\"doi\":\"10.1007/s00604-024-06852-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface functionalization and the combined utilization of zero‐dimensional and two‐dimensional nanomaterials is an effective method to achieve highly sensitive detection for electrochemical analysis. Using an all-in-one strategy, phthalocyanine, gold nanoparticles, and ionic liquid were successively modified on the graphene surface as a highly integrated electrode modification material. Phthalocyanine can repair the defects of reduced graphene oxide by binding to the graphene structure surface through non-covalent functionalization. The combination of ionic liquid on the surface of gold nanoparticles can enhance their physical and chemical activity while preserving their stability. The obtained phthalocyanine-coated graphene nanosheets decorated with ionic liquid-functionalized gold nanoparticles nanocomposites had enhanced electrocatalysis and conductivity ability, and were used for highly sensitive electrochemical detection of ascorbic acid in fruit juices. Excellent results were obtained for the detection of ascorbic acid in the linear range 0.05 to 50 µmol/L with a detection limit of 6.80 nmol/L (<i>S/N</i> = 3) and a sensitivity of 2.68 μA μM<sup>−1 </sup>cm<sup>−2</sup>, indicated that the proposed sensor strategy with multiple signal amplification can achieve higher detection sensitivity. Furthermore, the sensor was used to quantify ascorbic acid content in grapefruit and orange juice with good selectivity and accuracy. The highly integrated electroactive nanocomposites construction method described may also be used with other electrode modification materials and is anticipated to yield fresh perspectives on the advancement of ultrasensitive detection.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06852-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06852-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

表面功能化以及零维和二维纳米材料的综合利用是实现电化学分析高灵敏度检测的有效方法。酞菁、金纳米粒子和离子液体被相继修饰在石墨烯表面,成为一种高度集成的电极修饰材料。酞菁通过非共价官能化与石墨烯结构表面结合,可以修复还原氧化石墨烯的缺陷。在金纳米粒子表面结合离子液体可以增强其物理和化学活性,同时保持其稳定性。所获得的酞菁涂层石墨烯纳米片与离子液体功能化金纳米颗粒纳米复合材料具有更强的电催化和导电能力,可用于果汁中抗坏血酸的高灵敏度电化学检测。在 0.05 至 50 µmol/L 的线性范围内,抗坏血酸的检测限为 6.80 nmol/L(信噪比为 3),灵敏度为 2.68 μA μM-1 cm-2。此外,该传感器还被用于定量检测葡萄柚和橙汁中的抗坏血酸含量,具有良好的选择性和准确性。所描述的高度集成的电活性纳米复合材料构建方法也可用于其他电极改性材料,并有望为超灵敏检测技术的发展带来新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated tetrahydroxyphthalocyanine-coated graphene decorated with ionic liquid-functionalized gold nanoparticles for highly sensitive and selective electrochemical determination of ascorbic acid in fruit juices

Surface functionalization and the combined utilization of zero‐dimensional and two‐dimensional nanomaterials is an effective method to achieve highly sensitive detection for electrochemical analysis. Using an all-in-one strategy, phthalocyanine, gold nanoparticles, and ionic liquid were successively modified on the graphene surface as a highly integrated electrode modification material. Phthalocyanine can repair the defects of reduced graphene oxide by binding to the graphene structure surface through non-covalent functionalization. The combination of ionic liquid on the surface of gold nanoparticles can enhance their physical and chemical activity while preserving their stability. The obtained phthalocyanine-coated graphene nanosheets decorated with ionic liquid-functionalized gold nanoparticles nanocomposites had enhanced electrocatalysis and conductivity ability, and were used for highly sensitive electrochemical detection of ascorbic acid in fruit juices. Excellent results were obtained for the detection of ascorbic acid in the linear range 0.05 to 50 µmol/L with a detection limit of 6.80 nmol/L (S/N = 3) and a sensitivity of 2.68 μA μM−1 cm−2, indicated that the proposed sensor strategy with multiple signal amplification can achieve higher detection sensitivity. Furthermore, the sensor was used to quantify ascorbic acid content in grapefruit and orange juice with good selectivity and accuracy. The highly integrated electroactive nanocomposites construction method described may also be used with other electrode modification materials and is anticipated to yield fresh perspectives on the advancement of ultrasensitive detection.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信