{"title":"锚定 AgNO3 的普鲁士蓝衍生多孔 Ag/α-Fe2O3 异质结构可提高对苯甲酸甲酯的电化学传感性能","authors":"Ho Van Minh Hai, Van Cuong Nguyen, The Ky Vo","doi":"10.1007/s12039-024-02323-0","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we report on facile fabricating sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocubes harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> at different temperatures (300~500°C) and exploiting them for electrochemical sensing of methylparaben (MP). The Ag/Fe<sub>2</sub>O<sub>3</sub> nanocubes had crystallite sizes ranging from 300~400 nm and incorporated reduced Ag nanoparticles (AgNPs) ranging from 10.5~15.3 nm. Notably, the harvested Ag/Fe<sub>2</sub>O<sub>3</sub> composites were constructed hetero-interfacial Ag–Fe<sub>2</sub>O<sub>3</sub> structures inside the porous <i>α</i>-Fe<sub>2</sub>O<sub>3</sub> cubes with interconnected pore matrix resulting from the thermal conversion of PSB. The carbon glass electrode (GCE) coated with an Ag/Fe<sub>2</sub>O<sub>3</sub> sensor prepared at 400°C showed the highest oxidation peak at 0.84 V towards MP. In addition, the Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface achieved an excellent detection of MP with a low LOD of 0.14<i> µ</i>M and a linear response range of 10~38 <i>µ</i>M. The sensor also depicted good selectivity and stability during 10 days, demonstrating a suitable sensor for detecting and analyzing MP. This study provides a facile strategy for constructing a porous Ag/Fe<sub>2</sub>O<sub>3</sub> heterostructural composite as an efficient electrochemical sensing material.</p><h3>Graphical abstract</h3><p>Sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> and exploited for the electrochemical sensing of methylparaben. The results suggest that Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube crystals comprise heterointerfaces and interconnected pores. The Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface exhibited excellent detection of methylparaben, good stability, and selectivity.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AgNO3-anchored Prussian blue-derived porous Ag/α-Fe2O3 heterostructure with enhanced electrochemical sensing performance towards methylparaben\",\"authors\":\"Ho Van Minh Hai, Van Cuong Nguyen, The Ky Vo\",\"doi\":\"10.1007/s12039-024-02323-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, we report on facile fabricating sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocubes harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> at different temperatures (300~500°C) and exploiting them for electrochemical sensing of methylparaben (MP). The Ag/Fe<sub>2</sub>O<sub>3</sub> nanocubes had crystallite sizes ranging from 300~400 nm and incorporated reduced Ag nanoparticles (AgNPs) ranging from 10.5~15.3 nm. Notably, the harvested Ag/Fe<sub>2</sub>O<sub>3</sub> composites were constructed hetero-interfacial Ag–Fe<sub>2</sub>O<sub>3</sub> structures inside the porous <i>α</i>-Fe<sub>2</sub>O<sub>3</sub> cubes with interconnected pore matrix resulting from the thermal conversion of PSB. The carbon glass electrode (GCE) coated with an Ag/Fe<sub>2</sub>O<sub>3</sub> sensor prepared at 400°C showed the highest oxidation peak at 0.84 V towards MP. In addition, the Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface achieved an excellent detection of MP with a low LOD of 0.14<i> µ</i>M and a linear response range of 10~38 <i>µ</i>M. The sensor also depicted good selectivity and stability during 10 days, demonstrating a suitable sensor for detecting and analyzing MP. This study provides a facile strategy for constructing a porous Ag/Fe<sub>2</sub>O<sub>3</sub> heterostructural composite as an efficient electrochemical sensing material.</p><h3>Graphical abstract</h3><p>Sensors based on Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO<sub>3</sub> and exploited for the electrochemical sensing of methylparaben. The results suggest that Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub> nanocube crystals comprise heterointerfaces and interconnected pores. The Ag/<i>α</i>-Fe<sub>2</sub>O<sub>3</sub>@GCE interface exhibited excellent detection of methylparaben, good stability, and selectivity.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":\"136 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-024-02323-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02323-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AgNO3-anchored Prussian blue-derived porous Ag/α-Fe2O3 heterostructure with enhanced electrochemical sensing performance towards methylparaben
Herein, we report on facile fabricating sensors based on Ag/α-Fe2O3 nanocubes harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO3 at different temperatures (300~500°C) and exploiting them for electrochemical sensing of methylparaben (MP). The Ag/Fe2O3 nanocubes had crystallite sizes ranging from 300~400 nm and incorporated reduced Ag nanoparticles (AgNPs) ranging from 10.5~15.3 nm. Notably, the harvested Ag/Fe2O3 composites were constructed hetero-interfacial Ag–Fe2O3 structures inside the porous α-Fe2O3 cubes with interconnected pore matrix resulting from the thermal conversion of PSB. The carbon glass electrode (GCE) coated with an Ag/Fe2O3 sensor prepared at 400°C showed the highest oxidation peak at 0.84 V towards MP. In addition, the Ag/α-Fe2O3@GCE interface achieved an excellent detection of MP with a low LOD of 0.14 µM and a linear response range of 10~38 µM. The sensor also depicted good selectivity and stability during 10 days, demonstrating a suitable sensor for detecting and analyzing MP. This study provides a facile strategy for constructing a porous Ag/Fe2O3 heterostructural composite as an efficient electrochemical sensing material.
Graphical abstract
Sensors based on Ag/α-Fe2O3 nanocube harvesting by one-step pyrolyzing Prussian blue (PSB) template anchored AgNO3 and exploited for the electrochemical sensing of methylparaben. The results suggest that Ag/α-Fe2O3 nanocube crystals comprise heterointerfaces and interconnected pores. The Ag/α-Fe2O3@GCE interface exhibited excellent detection of methylparaben, good stability, and selectivity.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.