用于神经形态视觉系统的 RGB 色彩可分辨光子突触

IF 26.6 1区 材料科学 Q1 Engineering
Bum Ho Jeong, Jaewon Lee, Miju Ku, Jongmin Lee, Dohyung Kim, Seokhyun Ham, Kyu-Tae Lee, Young-Beom Kim, Hui Joon Park
{"title":"用于神经形态视觉系统的 RGB 色彩可分辨光子突触","authors":"Bum Ho Jeong,&nbsp;Jaewon Lee,&nbsp;Miju Ku,&nbsp;Jongmin Lee,&nbsp;Dohyung Kim,&nbsp;Seokhyun Ham,&nbsp;Kyu-Tae Lee,&nbsp;Young-Beom Kim,&nbsp;Hui Joon Park","doi":"10.1007/s40820-024-01579-y","DOIUrl":null,"url":null,"abstract":"<div><p>To emulate the functionality of the human retina and achieve a neuromorphic visual system, the development of a photonic synapse capable of multispectral color discrimination is of paramount importance. However, attaining robust color discrimination across a wide intensity range, even irrespective of medium limitations in the channel layer, poses a significant challenge. Here, we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities. By incorporating the strong induced dipole moment effect at the excitation, modulated by the wavelength of the incident light, into the floating gate, we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm<sup>−2</sup>. This approach is not restricted to a specific medium in the channel layer, thereby enhancing its applicability. The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array, involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction. Consequently, a convolutional neural network can achieve an impressive inference accuracy of over 94% for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing. Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses, enabling significant advancements in artificial visual systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01579-y.pdf","citationCount":"0","resultStr":"{\"title\":\"RGB Color-Discriminable Photonic Synapse for Neuromorphic Vision System\",\"authors\":\"Bum Ho Jeong,&nbsp;Jaewon Lee,&nbsp;Miju Ku,&nbsp;Jongmin Lee,&nbsp;Dohyung Kim,&nbsp;Seokhyun Ham,&nbsp;Kyu-Tae Lee,&nbsp;Young-Beom Kim,&nbsp;Hui Joon Park\",\"doi\":\"10.1007/s40820-024-01579-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To emulate the functionality of the human retina and achieve a neuromorphic visual system, the development of a photonic synapse capable of multispectral color discrimination is of paramount importance. However, attaining robust color discrimination across a wide intensity range, even irrespective of medium limitations in the channel layer, poses a significant challenge. Here, we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities. By incorporating the strong induced dipole moment effect at the excitation, modulated by the wavelength of the incident light, into the floating gate, we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm<sup>−2</sup>. This approach is not restricted to a specific medium in the channel layer, thereby enhancing its applicability. The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array, involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction. Consequently, a convolutional neural network can achieve an impressive inference accuracy of over 94% for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing. Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses, enabling significant advancements in artificial visual systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01579-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01579-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01579-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟人类视网膜的功能并实现神经形态视觉系统,开发一种能够进行多光谱颜色分辨的光子突触至关重要。然而,即使不考虑通道层的介质限制,要在很宽的强度范围内实现强大的色彩分辨能力也是一个巨大的挑战。在这里,我们提出了一种方法,它能赋予三端晶体管闪存以色彩分辨突触功能,甚至增强分辨能力。通过将激发时的强诱导偶极矩效应(受入射光波长调制)纳入浮动栅极,我们在 0.05 至 40 mW cm-2 的显著强度范围内实现了出色的 RGB 色彩分辨突触功能。这种方法并不局限于通道层中的特定介质,因此增强了其适用性。通过对光子突触阵列进行视觉预处理,包括区分 RGB 通道和通过降噪增强图像对比度,证明了这种色彩分辨突触功能的有效性。因此,经过预处理后,卷积神经网络在加拿大高级研究学院-10 彩色图像识别任务中的推理准确率达到了令人印象深刻的 94% 以上。我们提出的方法为在光子突触中实现稳健、多用途的 RGB 颜色识别提供了一种前景广阔的解决方案,使人工视觉系统取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGB Color-Discriminable Photonic Synapse for Neuromorphic Vision System

To emulate the functionality of the human retina and achieve a neuromorphic visual system, the development of a photonic synapse capable of multispectral color discrimination is of paramount importance. However, attaining robust color discrimination across a wide intensity range, even irrespective of medium limitations in the channel layer, poses a significant challenge. Here, we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities. By incorporating the strong induced dipole moment effect at the excitation, modulated by the wavelength of the incident light, into the floating gate, we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm−2. This approach is not restricted to a specific medium in the channel layer, thereby enhancing its applicability. The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array, involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction. Consequently, a convolutional neural network can achieve an impressive inference accuracy of over 94% for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing. Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses, enabling significant advancements in artificial visual systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信