Suhui Tan, Mengyuan Tan, Tao Zhang, Lu Gao, Yi Li, Xuechao Xu, Zhen-quan Yang
{"title":"基于 Arg-CeO2 水凝胶纳米酶的灵芝总抗氧化能力可视化评估平台的建立--利用自编程智能手机应用程序和自行设计的 3D 打印设备","authors":"Suhui Tan, Mengyuan Tan, Tao Zhang, Lu Gao, Yi Li, Xuechao Xu, Zhen-quan Yang","doi":"10.1007/s00604-024-06840-0","DOIUrl":null,"url":null,"abstract":"<div><p> A multienzyme-like L-argininemodified CeO<sub>2</sub> (Arg-CeO<sub>2</sub>) nanozyme was prepared for accurate total antioxidant capacity (TAC) determination of <i>Ganoderma sichuanense </i>(<i>G. sichuanense</i>). It exhibits oxidase-like and peroxidase-like activities catalyzing the generation of superoxide anion free radicals and hydroxyl radicals, accelerating 3, 3′, 5, 5′-tetramethylbenzidine (TMB) chromogenic reaction. Antioxidants can effectively eliminate the generated free radicals, inhibiting the TMB chromogenic reaction. Hence, TAC can be assessed by Arg-CeO<sub>2</sub> catalyzed TMB chromogenic reaction using ascorbic acid (AA) as a reference substance. TAC of <i>G. sichuanense </i>extracted using different solvents was determined, indicating the highest TAC observed in the <i>G. sichuanense </i>extracted by the mixture solvent (deionized water/ethanol/ethyl acetate = 1 : 1 : 1). A visual assessment platform based on Arg-CeO<sub>2</sub> hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D printed device is established. TAC using AA as a reference substance (3.33 ~ 83.33 µM) can be detected with a detection limit as low as 0.58 µM. The platform can realize one-step quantitative determination of TAC in <i>G. sichuanens</i>e within 40 min. The proposed visual assessment platform presented exhibits promising application prospects in the field of TAC assessment in food.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a visual assessment platform for total antioxidant capacity of Ganoderma sichuanense based on Arg-CeO2 hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D-printed device\",\"authors\":\"Suhui Tan, Mengyuan Tan, Tao Zhang, Lu Gao, Yi Li, Xuechao Xu, Zhen-quan Yang\",\"doi\":\"10.1007/s00604-024-06840-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> A multienzyme-like L-argininemodified CeO<sub>2</sub> (Arg-CeO<sub>2</sub>) nanozyme was prepared for accurate total antioxidant capacity (TAC) determination of <i>Ganoderma sichuanense </i>(<i>G. sichuanense</i>). It exhibits oxidase-like and peroxidase-like activities catalyzing the generation of superoxide anion free radicals and hydroxyl radicals, accelerating 3, 3′, 5, 5′-tetramethylbenzidine (TMB) chromogenic reaction. Antioxidants can effectively eliminate the generated free radicals, inhibiting the TMB chromogenic reaction. Hence, TAC can be assessed by Arg-CeO<sub>2</sub> catalyzed TMB chromogenic reaction using ascorbic acid (AA) as a reference substance. TAC of <i>G. sichuanense </i>extracted using different solvents was determined, indicating the highest TAC observed in the <i>G. sichuanense </i>extracted by the mixture solvent (deionized water/ethanol/ethyl acetate = 1 : 1 : 1). A visual assessment platform based on Arg-CeO<sub>2</sub> hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D printed device is established. TAC using AA as a reference substance (3.33 ~ 83.33 µM) can be detected with a detection limit as low as 0.58 µM. The platform can realize one-step quantitative determination of TAC in <i>G. sichuanens</i>e within 40 min. The proposed visual assessment platform presented exhibits promising application prospects in the field of TAC assessment in food.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06840-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06840-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Establishment of a visual assessment platform for total antioxidant capacity of Ganoderma sichuanense based on Arg-CeO2 hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D-printed device
A multienzyme-like L-argininemodified CeO2 (Arg-CeO2) nanozyme was prepared for accurate total antioxidant capacity (TAC) determination of Ganoderma sichuanense (G. sichuanense). It exhibits oxidase-like and peroxidase-like activities catalyzing the generation of superoxide anion free radicals and hydroxyl radicals, accelerating 3, 3′, 5, 5′-tetramethylbenzidine (TMB) chromogenic reaction. Antioxidants can effectively eliminate the generated free radicals, inhibiting the TMB chromogenic reaction. Hence, TAC can be assessed by Arg-CeO2 catalyzed TMB chromogenic reaction using ascorbic acid (AA) as a reference substance. TAC of G. sichuanense extracted using different solvents was determined, indicating the highest TAC observed in the G. sichuanense extracted by the mixture solvent (deionized water/ethanol/ethyl acetate = 1 : 1 : 1). A visual assessment platform based on Arg-CeO2 hydrogel nanozyme utilizing a self-programmed smartphone app and a self-designed 3D printed device is established. TAC using AA as a reference substance (3.33 ~ 83.33 µM) can be detected with a detection limit as low as 0.58 µM. The platform can realize one-step quantitative determination of TAC in G. sichuanense within 40 min. The proposed visual assessment platform presented exhibits promising application prospects in the field of TAC assessment in food.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.