实线上多项式矩阵的谱因式分解算法

IF 0.8 Q2 MATHEMATICS
Lasha Ephremidze
{"title":"实线上多项式矩阵的谱因式分解算法","authors":"Lasha Ephremidze","doi":"10.1007/s43036-024-00406-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we extend the basic idea of the Janashia–Lagvilava algorithm to adapt it for the spectral factorization of positive-definite polynomial matrices on the real line. This extension results in a new spectral factorization algorithm for polynomial matrix functions defined on <span>\\(\\mathbb {R}\\)</span>. The presented numerical example demonstrates that the proposed algorithm outperforms an existing algorithm in terms of accuracy.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for spectral factorization of polynomial matrices on the real line\",\"authors\":\"Lasha Ephremidze\",\"doi\":\"10.1007/s43036-024-00406-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we extend the basic idea of the Janashia–Lagvilava algorithm to adapt it for the spectral factorization of positive-definite polynomial matrices on the real line. This extension results in a new spectral factorization algorithm for polynomial matrix functions defined on <span>\\\\(\\\\mathbb {R}\\\\)</span>. The presented numerical example demonstrates that the proposed algorithm outperforms an existing algorithm in terms of accuracy.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00406-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00406-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们扩展了 Janashia-Lagvilava 算法的基本思想,使其适用于实线上正定多项式矩阵的谱因式分解。这一扩展为定义在 \(\mathbb {R}\) 上的多项式矩阵函数带来了一种新的谱因式分解算法。所给出的数值示例表明,所提出的算法在精确度方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm for spectral factorization of polynomial matrices on the real line

In this paper, we extend the basic idea of the Janashia–Lagvilava algorithm to adapt it for the spectral factorization of positive-definite polynomial matrices on the real line. This extension results in a new spectral factorization algorithm for polynomial matrix functions defined on \(\mathbb {R}\). The presented numerical example demonstrates that the proposed algorithm outperforms an existing algorithm in terms of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信