{"title":"使用纳米流体中冷器的两级往复式空气压缩机性能计算综述","authors":"Prathamesh Deshmukh, Naresh Chaudhari, Mangesh Mahajan","doi":"10.1007/s10973-024-13749-6","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of nanofluids in thermal engineering presents a promising avenue for addressing high-temperature challenges. Similarly, many industries still use air-cooled intercoolers for multistage air compressors which results in lower efficiency of the system. This study explores the application of Al<sub>2</sub>O<sub>3</sub> nanoparticles mixed with water as a base fluid to analyze the effect of intercooling in a two-stage reciprocating air compressor. The study employs a shell and tube heat exchanger with parallel and counter flow conditions. The computational analysis, facilitated by computational fluid dynamic software compares the thermal conductivity and heat transfer rates of water and Alumina Oxide based nanofluid to an air-intercooled system. Additionally, the study evaluates the isothermal and volumetric efficiency of the compressor, along with the work requirements for its low-pressure and high-pressure cylinders without using a chiller or external medium. While, achieving ideal intercooling conditions remains elusive in practical experiments, ongoing research focuses on enhancing intercooler efficiency through various nanofluid techniques. The findings suggest notable enhancements in isothermal efficiency by 7.18% and reductions in work input by 3.4% for the air compressor under specified parameters.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 22","pages":"12815 - 12822"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational review on performance of two stage reciprocating air compressor by using nanofluid-based intercooler\",\"authors\":\"Prathamesh Deshmukh, Naresh Chaudhari, Mangesh Mahajan\",\"doi\":\"10.1007/s10973-024-13749-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of nanofluids in thermal engineering presents a promising avenue for addressing high-temperature challenges. Similarly, many industries still use air-cooled intercoolers for multistage air compressors which results in lower efficiency of the system. This study explores the application of Al<sub>2</sub>O<sub>3</sub> nanoparticles mixed with water as a base fluid to analyze the effect of intercooling in a two-stage reciprocating air compressor. The study employs a shell and tube heat exchanger with parallel and counter flow conditions. The computational analysis, facilitated by computational fluid dynamic software compares the thermal conductivity and heat transfer rates of water and Alumina Oxide based nanofluid to an air-intercooled system. Additionally, the study evaluates the isothermal and volumetric efficiency of the compressor, along with the work requirements for its low-pressure and high-pressure cylinders without using a chiller or external medium. While, achieving ideal intercooling conditions remains elusive in practical experiments, ongoing research focuses on enhancing intercooler efficiency through various nanofluid techniques. The findings suggest notable enhancements in isothermal efficiency by 7.18% and reductions in work input by 3.4% for the air compressor under specified parameters.</p></div>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"149 22\",\"pages\":\"12815 - 12822\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10973-024-13749-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13749-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A computational review on performance of two stage reciprocating air compressor by using nanofluid-based intercooler
The utilization of nanofluids in thermal engineering presents a promising avenue for addressing high-temperature challenges. Similarly, many industries still use air-cooled intercoolers for multistage air compressors which results in lower efficiency of the system. This study explores the application of Al2O3 nanoparticles mixed with water as a base fluid to analyze the effect of intercooling in a two-stage reciprocating air compressor. The study employs a shell and tube heat exchanger with parallel and counter flow conditions. The computational analysis, facilitated by computational fluid dynamic software compares the thermal conductivity and heat transfer rates of water and Alumina Oxide based nanofluid to an air-intercooled system. Additionally, the study evaluates the isothermal and volumetric efficiency of the compressor, along with the work requirements for its low-pressure and high-pressure cylinders without using a chiller or external medium. While, achieving ideal intercooling conditions remains elusive in practical experiments, ongoing research focuses on enhancing intercooler efficiency through various nanofluid techniques. The findings suggest notable enhancements in isothermal efficiency by 7.18% and reductions in work input by 3.4% for the air compressor under specified parameters.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.