Chaosheng Tang, Wenle Xu, Junding Sun, Shuihua Wang, Yudong Zhang, Juan Manuel Górriz
{"title":"用于 COVID-19 诊断的图形池化多图网络","authors":"Chaosheng Tang, Wenle Xu, Junding Sun, Shuihua Wang, Yudong Zhang, Juan Manuel Górriz","doi":"10.1007/s42235-024-00600-9","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional Neural Networks (CNNs) have shown remarkable capabilities in extracting local features from images, yet they often overlook the underlying relationships between pixels. To address this limitation, previous approaches have attempted to combine CNNs with Graph Convolutional Networks (GCNs) to capture global features. However, these approaches typically neglect the topological structure information of the graph during the global feature extraction stage. This paper proposes a novel end-to-end hybrid architecture called the Multi-Graph Pooling Network (MGPN), which is designed explicitly for chest X-ray image classification. Our approach sequentially combines CNNs and GCNs, enabling the learning of both local and global features from individual images. Recognizing that different nodes contribute differently to the final graph representation, we introduce an NI-GTP module to enhance the extraction of ultimate global features. Additionally, we introduce a G-LFF module to fuse the local and global features effectively.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"3179 - 3200"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-graph Networks with Graph Pooling for COVID-19 Diagnosis\",\"authors\":\"Chaosheng Tang, Wenle Xu, Junding Sun, Shuihua Wang, Yudong Zhang, Juan Manuel Górriz\",\"doi\":\"10.1007/s42235-024-00600-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convolutional Neural Networks (CNNs) have shown remarkable capabilities in extracting local features from images, yet they often overlook the underlying relationships between pixels. To address this limitation, previous approaches have attempted to combine CNNs with Graph Convolutional Networks (GCNs) to capture global features. However, these approaches typically neglect the topological structure information of the graph during the global feature extraction stage. This paper proposes a novel end-to-end hybrid architecture called the Multi-Graph Pooling Network (MGPN), which is designed explicitly for chest X-ray image classification. Our approach sequentially combines CNNs and GCNs, enabling the learning of both local and global features from individual images. Recognizing that different nodes contribute differently to the final graph representation, we introduce an NI-GTP module to enhance the extraction of ultimate global features. Additionally, we introduce a G-LFF module to fuse the local and global features effectively.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 6\",\"pages\":\"3179 - 3200\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00600-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00600-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-graph Networks with Graph Pooling for COVID-19 Diagnosis
Convolutional Neural Networks (CNNs) have shown remarkable capabilities in extracting local features from images, yet they often overlook the underlying relationships between pixels. To address this limitation, previous approaches have attempted to combine CNNs with Graph Convolutional Networks (GCNs) to capture global features. However, these approaches typically neglect the topological structure information of the graph during the global feature extraction stage. This paper proposes a novel end-to-end hybrid architecture called the Multi-Graph Pooling Network (MGPN), which is designed explicitly for chest X-ray image classification. Our approach sequentially combines CNNs and GCNs, enabling the learning of both local and global features from individual images. Recognizing that different nodes contribute differently to the final graph representation, we introduce an NI-GTP module to enhance the extraction of ultimate global features. Additionally, we introduce a G-LFF module to fuse the local and global features effectively.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.